Submitted to Organic Letters
Page 4 of 4
Tang, P. Angew. Chem., Int. Ed., 2015, 54, 4065. (g) Xia, J.-B.; Zhu, C.;
In summary, a method for remote radical C−H-alkynylation of
unactivated C−H bonds was introduced. The process uses readily
prepared allylsulfonamides as N-radical precursors and excellent
regioselectivity is achieved via reliable intramolecular 1,5-H atom
transfer. The allylsulfonyl moiety, which is clearly underdevel-
oped in our eyes, shows great potential as a stable readily ac-
cessed N-radical precursor moiety.15 Using this approach, func-
tionalization of secondary and tertiary unactivated C−H bonds can
be achieved. In the case of methyl group activation, reasonable
yields are obtained for activated systems, where the methyl group
sits next to a heteroatom. Thanks to the great functional group
tolerance of radical chemistry, substrate scope is broad for these
transformations.
Chen, C. J. Am. Chem. Soc., 2013, 135, 17494. (h) Minisci, F.; Galli, R.;
Galli, A.; Bernardi, R. Tetrahedron Lett. 1967, 8, 2207. (i) Johnson, R. A.;
Greene, F. D. J. Org. Chem. 1975, 40, 2192. (j) Carestia, A. M.; Ravelli,
D.; Alexanian, E. J. Chem. Sci. 2018, 9, 5360. (k) Schmidt, V. A.; Quinn,
R. K.; Brusoe, A. T.; Alexanian, E. J. J. Am. Chem. Soc., 2014, 136,
14389.
(4) For reviews, see: (a) Stella, L. Angew. Chem., Int. Ed. 1983, 22,
337. (b) Majetich, G.; Wheless, K. Tetrahedron 1995, 51, 7095. (c) Jef-
frey, J. L.; Sarpong, R. Chem. Sci. 2013, 4, 4092.
(5) Reviews on N-radicals: (a) Bowman, W. R.; Fletcher, A. J.; Potts,
G. B. S. J. Chem. Soc. Perkin Trans. 1 2002, 2747. (b) Zard, S. Z. Chem.
Soc. Rev. 2008, 37, 1603. (c) Kärkäs, M. D. ACS Catal. 2017, 7, 4999. (d)
Zhao, Y.; Xia, W. Chem. Soc. Rev. 2018, 47, 2591.
(6) (a) Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272. (b) Choi, G. J.;
Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.
(c) Yuan, W.; Zhou, Z.; Gong, L.; Meggers, E. Chem. Commun. 2017, 53,
8964. (d) Chen, D.-F.; Chu, J. C. K.; Rovis, T. J. Am. Chem. Soc. 2017,
139, 14897. (e) For a highlight article, see: Hu, X.-Q.; Chen, J.-R.; Xiao,
W.-J. Angew. Chem., Int. Ed. 2017, 56, 1960.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI:
(7) 1,5-HAT to iminyl radicals and subsequent alkylation, see: Jiang,
H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692.
(8) Radical C−H alkynylation of activated C−H bonds via intermolecu-
lar HAT, see: (a) Gong, J.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118,
4486. (b) Hoshikawa, T.; Kamijo, S.; Inoue, M. Org. Biomol. Chem.,
2013, 11, 164. (c) Paul, S.; Guin, J. Green Chem. 2017, 19, 2530. (d)
Nagatomo, M.; Yoshioka, S.; Inoue, M. Chem. Asian J. 2015, 10, 120.
(9) Radical alkynylation with I(III) reagents: (a) Wang, X.; Studer, A.
Acc. Chem. Res. 2017, 50, 1712. (b) Yoshimura, A.; Zhdankin, V. V.
Chem. Rev. 2016, 116, 3328. (c) Brand, J. P.; Gonzalez, D. F.; Nicolai, S.;
Waser, J. Chem. Commun. 2011, 47, 102. (d) Brand, J. P.; Waser, J.
Chem. Soc. Rev., 2012, 41, 4165. (e) Jia, K.; Zhang, F.; Huang, H.; Chen,
Y. J. Am. Chem. Soc. 2016, 138, 1514. (f) Vaillant, F. L.; Courant, T.;
Waser, J. Angew. Chem., Int. Ed. 2015, 54, 11200. (g) Huang, H.; Zhang,
G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280. (h)
Wang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Lett. 2015, 17, 4798.
(i) Zhang, R.-Y.; Xi, L.-Y.; Shi, L.; Zhang, X.-Z.; Chen, S.-Y.; Yu, X.-Q.
Org. Lett. 2016, 18, 4024. (j) Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am.
Chem. Soc. 2012, 134, 14330. (k) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu,
X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54,
11196.
(10) Radical alkynylation with other reagents: (a) Xie, J.; Shi, S.;
Zhang, T.; Mehrkens, N.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem.
Int. Ed. 2015, 54, 6046. (b) Schaffner, A.-P.; Darmency, V.; Renaud, P.
Angew. Chem. Int. Ed. 2006, 45, 5847. (c) Russell, G. A.; Ngoviwatchai,
P.; Tashtoush, H. I.; Pla-Dalmau, A.; Khanna, R. K. J. Am. Chem. Soc.
1988, 110, 3530. (d) Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem.
Commun., 2015, 51, 5275. (e) Russell, G. A.; Ngoviwatchai, P. Tetrahe-
dron Lett. 1986, 27, 3479. (f) Gao, C.; Li, J.; Yu, J.; Yang, H.; Fu, H.
Chem. Commun., 2016, 52, 7292. (g) Jiang, H.; He, Y.; Cheng, Y.; Yu, S.
Org. Lett. 2017, 19, 1240. (h) Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. Angew.
Chem. Int. Ed. 2016, 55, 2866.
(11) (a) Guan, H.; Sun, S.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.; Liu,
L. Angew. Chem., Int. Ed. 2018, 57, 11413. (b) Morcillo, S. P.; Dauncey,
E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew.
Chem., Int. Ed. DOI: 10.1002/anie.201807941.
(12) Moutrille, C.; Zard, S. Z. Chem. Commun. 2004, 1848.
(13) Depending on the initiating radical, initiation can also proceed by
addition to the allyl sulfone moiety.
(14) Quinones, N.; Seoane, A.; Garcia-Fandino, R.; Mascarenas, J. L.;
Gulias, M. Chem. Sci. 2013, 4, 2874.
(15) For application of this approach for remote radical C−N3, C−Cl,
C−Br, C−SCF3, SPh and C−CN bond formation, see: Xia, Y.; Wang, L.;
Studer, A. Angew. Chem., Int. Ed. DOI: 10.1002/anie.201807455.
Experimental procedures and analytical data for all compounds.
(PDF)
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was financially supported by the China Scholarship
Council (stipend to L.W.) and the Deutsche Forschungsgemein-
schaft (DFG).
REFERENCES
(1) (a) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int.
Ed. 2012, 51, 8960. (b) Chu, J. C. K.; Rovis, T. Angew. Chem., Int. Ed.
2018, 57, 62. (c) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433.
(d) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. (e)
Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
(f) Sharmal, A.; Hartwig, J. F. Nature 2015, 517, 600.
(2) (a) Fokin, A. A.; Schreiner, P. R. Chem. Rev. 2002, 102, 1551. (b)
Chen, K.; Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 7247.
(c) Barluenga, J.; González-Bobes, F.; González, J. M. Angew. Chem. Int.
Ed. 2002, 41, 2556. (d) Basickes, N.; Hogan, T. E.; Sen, A. J. Am. Chem.
Soc. 1996, 118, 13111. (e) Montoro, R.; Wirth, T. Org. Lett. 2003, 5,
4729. (f) Huang, X.; Bergsten, T. M.; Groves, J. T. J. Am. Chem. Soc.
2015, 137, 5300. (g) Zheng, Z.; Hill, C. L. Chem. Commun., 1998, 2467.
(3) For reviews, see: (a) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.;
Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016; (b) Ravelli,
D.; Fagnoni, M.; Fukuyama, T.; Nishikawa, T.; Ryu, I. ACS Catal. 2018,
8, 701. (c) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis
2018, 50, 1569. (d) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800.
For selected examples on radical C–H modification via intermolecular
HAT process, see: (e) Halperin, S. D.; Fan, H.; Chang, S.; Martin, R. E.;
Britton, R. Angew. Chem., Int. Ed., 2014, 53, 4690. (f) Guo, S.; Zhang, X.;
ACS Paragon Plus Environment