Y. Liu et al. / Journal of Organometallic Chemistry 691 (2006) 5809–5824
5823
[
[
8] Y. Liu, S. Yamazaki, S. Yamabe, Y. Nakato, J. Mater. Chem. 15
2005) 4906.
9] (a) A. Faucheux, A.C. Gouget-Laemmel, C.H. de Villeneuve, R.
Boukherroub, F. Ozanam, P. Allongue, J.–N. Chazalviel, Langmuir
is calculated as the following equation. Equiv.ml = vSiOx/Inten-
sity_RatioSi(1 1 1)_surf, vSiOx = Peak area of SiO /total peak area of Si
2p ratios. For Intensity_RatioSi(1 1 1)_surf, Eq. (3) in Section 3 is used.
The equivalent fractional monolayer coverage for SiO may include
(
x
x
2
(
2 (2006) 153;
b) Y.-J. Liu, N.M. Navasero, H.-Z. Yu, Langmuir 20 (2004) 4039.
10] (a) X. Wallart, C.H. de Villeneuve, P. Allongue, J. Am. Chem. Soc.
27 (2005) 7871;
silicon oxidation both on the surface and under the surface
(formation of silicon oxide layer in partial area).
[24] (a) F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff,
Phys. Rev. B 38 (1988) 6084;
[
[
1
(
(
b) L.J. Webb, N.S. Lewis, J. Phys. Chem. B 107 (2003) 5404;
c) L.J. Webb, E.J. Nemanick, J.S. Biteen, D.W. Knapp, D.J.
(b) M.P. Seah, W.A. Dench, Surf. Inter. Anal. 1 (1979) 2;
(c) P.J. Cumpson, Surf. Inter. Anal. 31 (2001) 23.
[25] The coverage ratios of modified surfaces by alkenes, S1c and S1e–f
are lower than those modified by the corresponding alkynes (Si(111)–
Michalak, M.C. Traub, A.S.Y. Chan, B.S. Brunschwig, N.S. Lewis,
J. Phys. Chem. B 109 (2005) 3930.
11] F. Cattaruzza, A. Cricenti, A. Flamini, M. Girasole, G. Longo, A.
Mezzi, T. Prosperi, J. Mater. Chem. 14 (2004) 1461.
CH@CHCO
2
CH
2
CF
3
,
2 2 6 4
56%; Si(111)–CH@CHCO CH –C H -p-
CF , 56%; Si(111)–CH@CHCN, 51%) [8]. This possibly indicates
3
[
[
[
[
12] Y. Liu, S. Yamazaki, S. Yamabe, J. Org. Chem. 70 (2005) 556.
13] B. Giese, Angew. Chem., Int. Ed. Engl. 22 (1983) 753.
14] C. Chatgilialoglu, Chem. Rev. 95 (1995) 1229.
that the reactivity of alkenes in this hydrosilylation is slightly lower
than the activated alkynes, which was also observed for the model
reactions. Other factors such as the packing ability may be related to
the surface coverage. The reaction of Si(111)–H with a nonconju-
gated alkene (H C@CH(CH ) CO CH CF ) leading to 14% coverage
2 2 3 2 2 3
ratio was reported [8]. The comparable low coverage for S2 may also
15] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C.
Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.
Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J.
Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma,
G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D.
Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G.
Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T.
Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challa-
combe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C.
Gonzalez, J.A. Pople, GAUSSIAN 03, Revision C.02, Gaussian Inc.,
Wallingford, CT, 2004.
arise from the surface steric factor.
[26] The surface reaction does not require an explicit radical initiator or
high reaction temperature, similar to the reaction of Si(111) with
propiolate esters or tris(trimethylsilyl)silane with propiolate esters
[12,8]. According to the proposed mechanism for the reaction of
tris(trimethylsilyl)silane with propiolate esters [8] autoxidation of
surface Si–H group by contaminated molecular oxygen to generate a
silicon radical on the surface may be the speculative initial step of the
total radical chain reaction.
[27] In order to examine the role of charge carriers and obtain some
insight into the reaction mechanisms, the reaction of p-type Si(111)–
H with trifluoroethyl propiolate was carried out. The reaction gave a
46% coverage ratio by F1s XPS spectra. We believe the value is
similar to that of n-Si(111) within the experimental error and the
effect of charge carriers may be small [42].
[
16] (a) J.B. Lambert, S. Zhang, S.M. Ciro, Organometallics 13 (1994)
[28] (a) A.B. Sieval, A.L. Damirel, J.W.M. Nissink, M.R. Linford, J.H.
van der Maas, W.H. de Jeu, H. Zuilhof, E.J.R. Sudh o¨ lter, Langmuir
14 (1998) 1759;
(b) R. Boukherroub, D.D.M. Wayner, J. Am. Chem. Soc. 121 (1999)
11513.
[29] (a) Handbook of X-ray Photoelectron Spectroscopy; J. Chastain, ed.;
Perkin-Elmer Corp., Physical Electronics Division: Eden Prairie,
MN, 1992;
2430;
(
(
(
(
(
b) F.H. Elsner, H-G. Woo, T.D. Tilley, J. Am. Chem. Soc. 110
1988) 313;
c) H. Bock, J. Meuret, K. Ruppert, Angew. Chem., Int. Ed. Engl. 32
1993) 414;
d) H. Bock, J. Meuret, R. Baur, K. Ruppert, J. Organomet. Chem.
446 (1993) 113;
(
e) J. Frey, E. Schottland, Z. Rappoport, D. Bravo-Zhivotovskii, M.
(b) H. Jin, C.R. Kinser, P.A. Bertin, D.E. Kramer, J.A. Libera,
M.C. Hersam, S.T. Nguyen, M.J. Bedzyk, Langmuir 20 (2004)
6252.
Nakash, M. Botoshansky, M. Kaftory, Y. Apeloig, J. Chem. Soc.,
Perkin Trans. 2 (1994) 2555.
[
[
17] DG298 value of A was previously reported as –6.1 kcal/mol [12]. This
time, slightly more stable C–O single bond rotamer was obtained.
18] When CH Cl was used as a solvent, no formation of Si(111)–Cl was
2 2
[30] (a) U. Gelius, P.F. Heden, J. Hedman, B.J. Lindberg, R. Manne, R.
Nordberg, C. Nordling, K. Siegbahn, Phys. Scripta 2 (1970) 70;
(b) X.L. Zhou, F. Solymosi, P.M. Blass, K.C. Cannon, J.M. White,
Surf. Sci. 219 (1989) 294.
[31] R. Voicu, R. Boukherroub, V. Bartzoka, T. Ward, J.T.C. Wojtyk,
D.D.M. Wayner, Langmuir 20 (2004) 11713.
[32] (a) H. Asanuma, G.P. Lopinski, H.-Z. Yu, Langmuir 21 (2005) 5013;
(b) R. Boukherroub, J.T.C. Wojtyk, D.D.M. Wayner, D.J. Lock-
wood, J. Electrochem. Soc. 149 (2002) H59.
[33] C. Gurtner, A.W. Wun, M.J. Sailor, Angew. Chem. Int. Ed. 38
(1999) 1966.
detected by XPS spectra (Cl 2p (200 eV) and Cl 2s (270 eV)) of the
surfaces S1d, S1e and S2.
[
19] For the reaction of Si(111)–H with 2b, formation of the surface S1b
was assumed from the model reaction result. The reaction of 1 and 2b
gave 3b as major product and no O-silylated product was identified.
However, because of the reported results of competing reactions of
Si(111)–H with C@C and OH groups [4c] and formation of Si–OR by
thermal reaction of Si(111)–H and alcohols, [41] a close analysis of
the surface will be needed to rule out the reaction of the OH groups
with the Si–H bonds.
[34] Compared with surface S8 (Fig. 4, Equiv.ml of SiO
intensity of oxidized Si peak in Si 2p XPS spectrum in S9a increased
(Fig. 5, Equiv.ml of SiO = 0.87).
x
[23] = 0.37), the
[
[
20] J. Zhang, C.Q. Cui, T.B. Lim, E.-T. Kang, K.G. Neoh, S.L. Lim,
K.L. Tan, Chem. Mater. 11 (1999) 1061.
x
[35] The possibility to increase the surface quality after chemical
21] The conflicting intensity of C–C and C@O in C 1s peak of XPS
spectra for surface S2 may arise from contaminated carbon. The
coverage ratio for S2 was estimated by C 1s (C@O) peak.
22] E.J. Lee, T.W. Bitner, J.S. Ha, M.J. Shane, M.J. Sailor, J. Am.
Chem. Soc. 118 (1996) 5375.
transformation was examined. Retreatment of Si(111)–CH@
CHCO
2
CH
2
CF
3
surface (22% coverage) with 5% HF (1 min) and
subsequent reaction with alkyne HC„CCO
2
CH CF gave the surface
2
3
[
[
with 38% coverage by XPS. Further study on application to various
surfaces is planned in due course.
23] The silicon oxidation was estimated from the equivalent fractional
[36] X. Zhou, M. Ishida, A. Imanishi, Y. Nakato, J. Phys. Chem. B 105
(2001) 156.
x x
monolayer coverage (Equiv.ml)of SiO by XPS [10b]. Equiv.ml of SiO