Page 7 of 8
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
1
14
(a) Hoffmann, N. Chem. Rev. 2008, 108, 1052–1103. (b) Bach,
(a) Yoo, W.-J.; Tsukamoto, T.; Kobayashi, S. Org. Lett. 2015,
17, 3640–3642. (b) Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am.
Chem. Soc. 2016, 138, 12715–12718. (c) Welin, E. R.; Le, C.; Arias-
Rotondo, D. M.; McCusker, J. K.; MacMillan, D. W. C. Science
2016, 355, 380–385.
T.; Hehn, J. P. Angew. Chemie Int. Ed. 2011, 50, 1000–1045. (c)
Kärkäs, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016,
116, 9683–9747.
2 (a) Inoue, Y. Chem. Rev. 1992, 92, 741–770. (b) Brimioulle, R.;
Lenhart, D.; Maturi, M. M.; Bach, T. Angew. Chem. Int. Ed. 2015,
54, 3872–3890.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
15 (a) Farney, E. P.; Yoon, T. P. Angew. Chem. Int. Ed. 2014, 53,
793–797. (b) Xia, X.-D.; Xuan, J.; Wang, Q.; Lu, L.-Q.; Chen, J.-R.;
Xiao, W.-J. Adv. Synth. Catal. 2014, 356, 2807–2812.
3 (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322–5363. (b) Schultz, D. M.; Yoon, T. P. Science 2014,
343, 1239176. (c) Narayanam, J. M. R.; Stephenson, C. R. J. Chem.
Soc. Rev. 2011, 40, 102–113.
16
(a) Ueno, T.; Urano, Y.; Setsukinai, K.-I.; Takakusa, H.;
Kojima, H.; Kikuchi, K.; Ohkubo, K.; Fukuzumi, S.; Nagano, T. J.
Am. Chem. Soc. 2004, 126, 14079–14085. (b) Choi, E. J.; Kim, E.;
Lee, Y.; Jo, A.; Park, S. B. Angew. Chem. Int. Ed. 2014, 53, 1346–1350.
17 (a) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser,
P.; von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85–277. (b)
Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F.
Top. Curr. Chem. 2007, 281, 143–203. (c) Singh, A.; Teegardin, K.;
Kelly, M.; Prasad, K. S.; Krishnan, S.; Weaver, J. D. J. Organomet.
Chem. 2015, 776, 51–59. (d) Henwood, A. F.; Zysman-Colman, E.
Chem. Commun. 2017, 53, 807–826.
4
(a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322,
77–80. (b) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134,
8094–8097. (c) Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong,
M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735–17738. (d)
Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344,
392–396. (e) Ruiz Espelt, L.; McPherson, I. S.; Wiensch, E. M.;
Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452–2455. (f) Amador, A.
G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722–
4725.
18 (a) Gong, L.; Chen, L.-A.; Meggers, E. Angew. Chem. Int. Ed.
2014, 53, 10868–10874. (b) Zhang, L.; Meggers, E. Acc. Chem. Res.
2017, 50, 320–330.
5 For an exception involving triplet sensitization, see: Blum, T.
R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. Science 2016,
354, 1391–1395.
19
(a) Chen, L.-A.; Xu, W.; Huang, B.; Ma, J.; Wang, L.; Xi, J.;
6
Turro, N. J. “Organic Photochemistry—An Overview.” In
Harms, K.; Gong, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135,
10598–10601. (b) Chen, L.-A.; Tang, X.; Xi, J.; Xu, W.; Gong, L.;
Meggers, E. Angew, Chem. Int. Ed. 2013, 52, 14021–14025. (c) Xu,
W.; Arieno, M.; Löw, H.; Huang, K.l Xie, X.; Cruchter, T.; Ma, Q.;
Xi, J.; Huang, B.; Wiest, O.; Gong, L.; Meggers, E. J. Am. Chem. Soc.
2016, 138, 8774–8780.
Modern Molecular Photochemistry; Bejamin/Cummings: Menlo
Park, CA, 1978; Ch 1, pp 1–16.
7 Verhoven, J. W. Pure & Appl. Chem. 1996, 68, 2223–2286.ꢀ
8 Chiral Lewis acids have also been used to control excited state
photoreactions by modifying the photochemical properties of an
organic chromophore so that only the bound form reacts. Upon
either direct excitation or triplet energy transfer, the chiral Lewis
acid directs the facial selectivity for the subsequent reaction. See,
for example ref 5 and the following: (a) Guo, H.; Herdtweck, E.;
Bach, T. Angew. Chem. Int. Ed. 2010, 49, 7782–7785. (b) Brim-
ioulle, R.; Bach, T. Science 2013, 342, 840–843. (c) Brimioulle, R.;
Bauer, A.; Bach, T. J. Am. Chem. Soc. 2015, 137, 5170–5176.
9 (a) Müller, C.; Bauer, A.; Bach, T. Angew. Chem. Int. Ed. 2009,
48, 6640–6642. (b) Alonso, R.; Bach, T. Angew. Chem. Int. Ed.
2014, 53, 4368–4371. (c) Tröster, A.; Alonso, R.; Bauer, A.; Bach, T.
J. Am. Chem. Soc. 2016, 138, 7808–7811.
20 (a) J. Ma, X. Ding, Y. Hu, Y. Huang, L. Gong, E. Meggers Na-
ture Commun. 2014, 5, 4531. (b) Huo, H.; Fu, C.; Wang, C.; Harms,
K.; Meggers, E. Chem. Commun. 2014, 50, 10409–10411.
21 (a) Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Rose, P.; Chen, L.-
A.; Harms, K.; Marsche, M.; Hilt, G.; Meggers, E. Nature 2014, 515,
100–103. (b) Huo, H.; Wang, C.; Harms, K.; Meggers, E. J. Am.
Chem. Soc. 2015, 137, 9551–9556. (c) Wang, C.; Zheng, Y.; Huo, H.;
Röse, P.; Zhang, L.; Harms, K.; Hilt, G.; Meggers, E. Chem. Eur. J.
2015, 21, 7355–7359. (d) C. Wang, J. Qin, X. Shen, R. Riedel, K.
Harms, E. Meggers, Angew. Chem. Int. Ed. 2016, 55, 685–688.
22 Bach has recently described an enantioselective photochem-
ical rearrangement using an iridium catalyst that is covalently
tethered to a chiral hydrogen bonding motif. However, the latter
component provides the stereoinduction during the reaction, as
the metal center is employed as a 1:1 mixture of diastereomers.
See: Böhm, A.; Bach, T. Synlett 2016, 27, 1056–1060.
10
Vallavoju, N.; Selvakumar, S.; Jockusch, S.; Sibi, M. P.; Siva-
guru, J. Angew. Chem. Int. Ed. 2014, 53, 5604–5608.
11 (a) Lu, Z.; Yoon, T. P. Angew. Chem. Int. Ed. 2012, 51, 10329–
10332. (b) Zou, Y.-Q.; Duan, S.-W.; Meng, X.-G.; Hu, X.-Q.; Gao,
S.; Chen, J.-R.; Xiao, W.-J. Tetrahedron 2012, 68, 6914–6919. (c)
Hurtley, A. E.; Lu, Z.; Yoon, T. P. Angew. Chem. Int. Ed. 2014, 53,
8991–8994.
23
Huang, X.; Quinn, T. R.; Harms, K.; Webster, R. D.; Zhang,
L.; Wiest, O.; Meggers, E. J. Am. Chem. Soc. 2017, 139, 9120–9123.
24 (a) Maturi, M. M.; Wenninger, M.; Alonso, R.; Bauer, A.; Pö-
thig, A.; Riedle, E.; Bach, T. Chem. Eur. J. 2013, 19, 7461–7472. (b)
Bauer, A.; Alonso Ruiz, R. “Templated Enantioselective Photoca-
talysis.” In Chemical Photocatalysis; König, B., Ed.; De Gruyter:
Berlin, 2013; pp 67–90.
12 Scholz, S. O.; Farney, E. P.; Kim, S.; Bates, D. M.; Yoon, T. P.
Angew. Chem. Int. Ed. 2016, 55, 2239–2242.
13
Singh, K.; Staig, S. J.; Weaver, J. D. J. Am. Chem. Soc. 2014,
136, 5275–5278.
ACS Paragon Plus Environment