Job/Unit: O30548
/KAP1
Date: 03-07-13 10:12:15
Pages: 6
S. S. Kitambi, P. Arya et al.
SHORT COMMUNICATION
[12] a) M. Aeluri, J. Gaddam, D. V. K. S. Trinath, G. Chandrasekar,
S. S. Kitambi, P. Arya, Eur. J. Org. Chem. DOI: 10.1002/
ejoc.201300408; b) S. Chamakuri, S. K. R. Guduru, S. Pamu,
G. Chandrasekar, S. S. Kitambi, P. Arya, Eur. J. Org. Chem.
DOI: 10.1002/ejoc.201300409.
[13] a) S. Dandapani, L. A. Marcaurelle, Nat. Chem. Biol. 2010, 6,
861–863; b) S. L. Schreiber, Proc. Natl. Acad. Sci. USA 2011,
108, 6699–6702.
and C-5H orientation and their corresponding trans equa-
torial–axial C-1H and C-5H analogues (i.e., 5.8a and 5.8d,
Figure 2) did not show any biological response in angiogen-
esis assays. Moreover, the acyclic precursors of both active
compounds (5.5a and 5.5d) also did not show any effect on
angiogenesis.
[14] J. P. Nandy, M. Prakesch, S. Khadem, P. T. Reddy, U. Sharma,
P. A r ya , Chem. Rev. 2009, 109, 1999–2060.
[15] W. H. Sauer, M. K. Schwarz, J. Chem. Inf. Comput. Sci. 2003,
43, 987–1003.
Conclusions
To summarize, using sugar as the starting material, we
obtained four different types of glycohybrid-based macro-
cyclic compounds. These macrocyclic architecutres are
novel and have not been reported earlier. Further, on evalu-
ation of this toolbox in a zebrafish screen for angiogenesis,
we discovered two structurally related compounds that are
active as antiangiogenesis agents. These findings are at an
early stage of our work related to angiogenesis, and a much
deeper investigation would be needed further to understand
their mode of action.
[16] E. M. Driggers, S. P. Hale, J. Lee, N. K. Terrett, Nat. Rev. Drug
Discovery 2008, 7, 608–624.
[17] L. F. Peng, B. Z. Stanton, N. Maloof, X. Wang, S. L. Schreiber,
Bioorg. Med. Chem. Lett. 2009, 19, 6319–6325.
[18] a) D. Monti, P. Gramatica, G. Speranza, P. Manitto, Tetrahe-
dron Lett. 1987, 28, 5047–5058. For related macrocyclic-based
glycoside natural products, see: b) A. Fürstner, T. Muller, J.
Org. Chem. 1998, 63, 424–425; c) D. P. Larson, C. H.
Heathcock, J. Org. Chem. 1997, 62, 8406–8418; d) S. F. Lu, Q.
O’Yang, Z. W. Guo, B. Yu, Y. Z. Hui, J. Org. Chem. 1997, 62,
8400–8405; e) R. Pereda-Miranda, R. Mata, A. L. Anaya,
D. B. Wickramaratne, J. M. Pezzuto, A. D. Kinghorn, J. Nat.
Prod. 1993, 56, 571–582.
Supporting Information (see footnote on the first page of this arti-
cle): General information, experimental procedures, and zebrafish
screening assay.
[19] J. P. McDevitt, J. P. T. Lansbury, J. Am. Chem. Soc. 1996, 118,
3818–3828.
[20] R. E. Looper, D. Pizzirani, S. L. Schreiber, Org. Lett. 2006, 8,
2063–2066.
[21] K. D. Bodine, D. Y. Gin, M. S. Gin, J. Am. Chem. Soc. 2004,
Acknowledgments
126, 1638–1639.
[22] V. D. Bock, R. Perciaccante, T. P. Jansen, H. Hiemstra, J. H.
van Maarseveen, Org. Lett. 2006, 8, 919–922.
[23] A. R. Kelly, J. Wei, S. Kesavan, J. C. Marie, N. Windmon,
D. W. Young, L. A. Marcaurelle, Org. Lett. 2009, 11, 2257–
2260.
This work was supported by Department of Science and Technol-
ogy (DST) (SR/S1/OC-30/2010) and DBT (102/IFD/SAN/PR 2862/
2010-11) grants to P. A.. S. J., B. D. and M. K. thank the Council
of Scientific and Industrial Research (CSIR) funding agency for
the award of the Ph.D fellowship. We also thank the our analytical
team for providing excellent HPLC-MS and NMR support.
[24] R. A. Turner, A. G. Oliver, R. S. Lokey, Org. Lett. 2007, 9,
5011–5014.
[25] J. L. Tan, L. I. Zon, Methods Cell Biol. 2011, 105, 493–516.
[26] R. T. Peterson, M. C. Fishman, Methods Cell Biol. 2011, 105,
525–541.
[27] C. Lin, M. Wu, J. Dong, PLoS One 2012, 7, e31708.
[28] M. Konantz, T. B. Balci, U. F. Hartwig, G. Dellaire, M. C. An-
dre, J. N. Berman, C. Lengerke, Ann. N. Y. Acad. Sci. 2012,
1266, 124–137.
[1] M. R. Arkin, J. A. Wells, Nat. Rev. Drug Discovery 2004, 3,
301–317.
[2] J. A. Wells, C. L. McClendon, Nature 2007, 450, 1001–1009.
[3] D. L. Boger, J. Desharnais, K. Capps, Angew. Chem. 2003, 115,
4270; Angew. Chem. Int. Ed. 2003, 42, 4138–4176.
[4] J. D. Scott, T. Pawson, Science 2009, 326, 1220–1224.
[5] E. Comer, H. Liu, A. Joliton, A. Clabaut, C. Johnson, L. B.
Akella, L. A. Marcaurelle, Proc. Natl. Acad. Sci. USA 2011,
108, 6751–6756.
[6] B. Lewandowski, S. Jarosz, Org. Lett. 2010, 12, 2532–2535.
[7] M. C. Matos, P. V. Murphy, J. Org. Chem. 2007, 72, 1803–1806.
[8] L. Fan, O. Hindsgaul, Org. Lett. 2002, 4, 4503–4506.
[9] G. W. Chen, A. Kirschning, Chem. Eur. J. 2002, 8, 2717–2729.
[10] A. Ajay, S. Sharma, M. P. Gupt, V. Bajpai, Hamidullah, B.
Kumar, M. P. Kaushik, R. Konwar, R. S. Ampapathi, R. P. Tri-
pathi, Org. Lett. 2012, 14, 4306–4309.
[29] A. Vogt, P. A. McPherson, X. Shen, R. Balachandran, G. Zhu,
B. S. Raccor, S. G. Nelson, M. Tsang, B. W. Day, Chem. Biol.
Drug Des. 2009, 74, 358–368.
[30] A. Vogt, A. Cholewinski, X. Shen, S. G. Nelson, J. S. Lazo, M.
Tsang and N. A. Hukriede, Developmental dynamics: an official
publication of the American Association of Anatomists, 2009,
238, 656–663.
[31] K. Stoletov, R. Klemke, Oncogene 2008, 27, 4509–4520.
[32] G. N. Serbedzija, E. Flynn, C. E. Willett, Angiogenesis 1999, 3,
353–359.
[33] J. M. Ebos, R. S. Kerbel, Nature Reviews. Clinical Oncology
2011, 8, 210–221.
[34] Y. Shaked, R. S. Kerbel, Cancer Res. 2007, 67, 705.
[11] a) B. Dasari, S. Jogula, R. Borhade, S. Balasubramanian, G.
Chandrasekar, S. S. Kitambi, P. Arya, Org. Lett. 2013, 15, 432–
435; b) M. Aeluri, C. Pramanik, L. Chetia, N. K. Mallurwar, [35] N. Ferrara, R. S. Kerbel, Nature 2005, 438, 967–974.
S. Balasubramanian, G. Chandrasekar, S. S. Kitambi, P. Arya,
Received: April 16, 2013
Org. Lett. 2013, 15, 436–439.
Published Online:
6
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0