7
8
H. A. J. Carless, T etrahedron: Asymmetry, 1992, 3, 795.
and anhydrous DMF (5 mL) were added. A solution of cyclo-
hexanone enol triÑate39 (216 mg, 0.94 mmol) in dry DMF (5
mL) was added to the reaction Ñask via syringe, under argon
atmosphere. The trimethyltin derivative of the vinyl bromide
G. N. Sheldrake, in Chirality and Industry, ed. A. N. Collins,
G. N. Sheldrake and J. Crosby, John Wiley and Sons, Chichester,
UK, 1992, p. 127.
T. Hudlicky and J. W. Reed, in Advances in Asymmetric Synthesis,
ed. A. Hassner, JAI Press, Greenwich, CT, 1995, p. 271.
A. D. Grund, SIM News, 1995, 45, 59.
9
3
4 (300 mg, 0.94 mmol), prepared according to the procedure
of Stille,40 was dissolved in dry DMF (5 mL), and the solution
added dropwise to the reaction Ñask via syringe. The starting
material was consumed after 4 h of stirring at room tem-
perature, according to TLC. The reaction mixture was washed
10
11
12
T. Hudlicky and A. J. Thorpe, Chem. Commun., 1996, 1993.
T. Hudlicky, Chem. Rev., 1996, 96, 3.
13 T. Hudlicky, D. A. Entwistle, K. K. Pitzer and A. J. Thorpe,
with 5% NaHCO (aq) (2 ] 10 mL), and the aqueous layer
Chem. Rev., 1996, 96, 1195.
3
1
1
4
5
T. Hudlicky, ACS Symp. Ser., 1996, 626, 180.
was extracted several times with pentane. The organic layers
T. Hudlicky, in Green Chemistry: Frontiers in Benign Chemical
Syntheses and Processes, ed. P. T. Anastas and T. C. Williamson,
Oxford University Press, Oxford, UK, 1998, ch. 10, p. 166.
A racemic bis-hydroxylation of benzene with OsO under pro-
were combined, dried with Na SO , and the solvent was
2
4
removed under vacuum to a†ord a red oil. The residue was
dissolved in a solvent mixture of THFÈH OÈTFA (4 : 1 : 1; 10
1
6
7
2
4
mL) and stirred for 1 h. The mixture was concentrated under
tolytic conditions has been reported: W. B. Motherwell and A. S.
vacuum and the residue washed with 5% NaHCO (2 ] 5
Williams, Angew. Chem., Int. Ed. Engl., 1995, 34, 2031.
D. T. Gibson, B. Gschwendt, W. K. Yeh and V. M. Kobal, Bio-
chemistry, 1973, 12, 1520.
3
1
mL) and water (2 ] 5 mL). The organic layer was dried over
Na SO and the product puriÐed by Ñash chromatography
2
4
18 R. E. Cripps, P. W. Trudgill and G. Whately, Eur. J. Biochem.,
(
1
hexaneÈEtOAc 1 : 4) to a†ord 36 as an o†-white solid (43 mg,
1
978, 86, 175.
8%). R \ 0.54; mp \ 143È144 ¡C; [a]28 [88.8 (c 1.0,
1
9
S. Ahmed, Ph.D. Thesis, Imperial College of Science, Technology
and Medicine, London, 1991. D. W. Ribbons, thesis director.
f
D
CHCl ); IR (KBr): 3222, 3060, 1451 cm~1; 1H NMR (300
3
MHz, DMSO-d ): d 5.99 (m, 1H), 5.64 (m, 1H), 4.41 (d,
20 D. R. Boyd, N. D. Sharma, N. I. Bowers, J. Du†y, J. S. Harrison
6
and H. Dalton, J. Chem. Soc., Perkin T rans. 1, 2000, 1345.
V. Bui, T. V. Hansen, Y. StenstrÔm, D. W. Ribbons and T. Hud-
licky, J. Chem. Soc., Perkin T rans. 1, 2000, 1669.
J \ 6.1, 1H), 4.24 (d, J \ 5.2 Hz, 1H), 4.12 (m, 1H), 3.44È3.33
2
1
(
m, 1H), 2.19È1.98 (m, 6H), 1.75È1.38 (m, 6H); 13C NMR (75
MHz, CDCl ): d 137.6, 134.3, 124.3, 123.5, 70.0, 65.9, 25.84,
3
22 A blocked mutant is a bacterial strain that lacks a particular
enzyme in a metabolic pathway, resulting in accumulation of the
metabolic intermediate produced immediately before the step
blocked. In this case (Pp 39D), the enzyme that dehydrogenates
cis-dihydrodiols to catechols is missing.
2
5.77, 24.94, 24.85, 22.87, 22.21; MS (FAB): m/z 194 (5), 177
(
1
22), 93 (100); HRMS (CI): m/z calc. for C H O (M`):
94.1307. Found: 194.1253.
1
2 18 2
2
3
All organisms used in this study were provided by David T.
Gibson. (a) Pseudomonas putida 39D, see: D. T. Gibson, J. R.
Koch and R. E. Kallio, J. Biol. Chem., 1968, 7, 2653; (b) Escheri-
chia coli JM109 (pDTG 601) expressing TDO, see: G. J. Zylstra
and D. T. Gibson, J. Biol. Chem., 1989, 264, 14940; (c) E. coli
JM109 (pDTG 141) expressing NDO, see: M. J. Simon, T. D.
Osslund, R. Saunders, B. D. Ensley, S. Suggs, A. Harcourt, W. C.
Suen, D. L. Cruden and D. T. Gibson, Gene, 1993, 127, 31.
(
1S,2R)-3-Benzyl-cyclohex-3-ene-1,2-diol (39)
An aliquot of the crude extract (2 g, 10 mmol) from bio-
oxidation of substrate 21 was subjected to PAD (5.8 g, 30
mmol) reduction according to the general procedure. The
product was puriÐed by chromatography (hexaneÈEtOAc
1
: 1) to a†ord a white solid (0.98 g, 49%): mp \ 73.5È75 ¡C;
[
1
a]26 [160.4 (c 1.0, MeOH); IR (KBr): 3281, 3024, 1602,
24 For E. coli JM109 (pDTG 602), see ref. 23b.
D
2
5
It is difficult to introduce the catechol unit into highly functional-
ized compounds because of the harsh oxidizing conditions
usually required. On the other hand, the presence of a catechol
functionality in the starting materials alters the reactivity of the
arene and may complicate the subsequent chemistry. Thus, the
enzymatic introduction of this functionality into advanced inter-
mediates has the potential to greatly simplify synthetic routes to
catechol-containing targets.
494, 1453, 1260, 1078 cm~1; 1H NMR (300 MHz, DMSO-
d ): d 7.32È7.23 (m, 2H), 7.21È7.12 (m, 3H), 5.36 (s, 1H), 4.47
6
(
d, J \ 5.7, 1H), 4.31 (dd, J \ 5.7, 1H), 3.62 (t, J \ 4.5 Hz, 1H),
3
1
1
.44È3.31 (m, 3H), 2.11È2.08 (m, 2H), 1.70È1.52 (m, 1H), 1.50È
.38 (m, 1H); 13C NMR (75 MHz, CDCl ): d 139.7, 137.4,
3
29.2, 128.6, 127.2, 126.4, 69.8, 68.2, 41.0, 25.5, 24.1; MS
(
FAB): m/z: 188 (12), 187 (100), 185 (26), 169 (19), 93 (31),
2
6
D. Gonzales, V. Schapiro, G. Seoane, T. Hudlicky and K.
Abboud, J. Org. Chem., 1997, 62, 1194; T. Hudlicky, K. Oppong,
C. Duan, C. Stanton, M. G. Natchus and M. J. Laufersweiler,
Bioorg. Med. Chem. L ett., 2001, in press.
9
1
7
1(38); HRMS (CI): m/z calc. for C H O : (M [ OH):
1
3 16 2
87.1123. Found: 187.1125. Anal. calc. for C
6.44; H, 7.90%. Found: C, 76.20; H, 7.93%.
H
O : C,
1
3 16 2
2
2
7
8
T. Hudlicky, E. E. Boros and C. H. Boros, T etrahedron: Asym-
metry, 1993, 4, 1365.
Acknowledgements
We are grateful to Professor David Gibson (University of
Iowa) for providing us with a sample of E. coli JM 109
K. Ko
nigsberger and T. Hudlicky, T etrahedron: Asymmetry,
1
993, 4, 2469.
2
3
9
0
T. Hudlicky, E. E. Boros and C. H. Boros, Synlett., 1992, 391.
M. R. Stabile, T. Hudlicky, M. L. Meisels, G. Butora, A. G.
Gunn, S. P. Fearnley, A. J. Thorpe and M. R. Ellis, Chirality,
1995, 7, 556.
(
pDTG602). Financial support from NSF (CHE-9615112 and
CHE-9910412), EPA (R826113) and TDC Research, Inc., as
well as from the Agricultural University of Norway (T. V. H.
and Y. S.) and the Norwegian Research Council (T. V. H.) is
gratefully acknowledged.
31 L. A. Paquette, J. H. Kuo and J. Doyon, T etrahedron, 1996, 52,
1625.
3
3
3
1
2
3
4
V. P. Bui, T. V. Hansen, Y. StenstrÔm and T. Hudlicky, Green
Chem., 2000, 2, 263.
Phenylcyclohexane was converted to the corresponding catechol
with JM109 (pDTG602), see Scheme 3.
References and notes
T. Hudlicky, M. R. Stabile, D. T. Gibson and G. M. Whited, Org.
Synth., 1999, 76, 77.
1
2
3
D. T. Gibson, J. R. Koch, C. L. Schmid and R. E. Kallio, Bio-
chemistry, 1968, 7, 3795.
35 G. Berti, B. Macchia, F. Macchia and L. Monti, J. Chem. Soc. C,
1971, 3371.
36 W. E. Bachmann and L. B. Wick, J. Am. Chem. Soc., 1950, 72,
V. Ley, F. Sternfeld and S. Taylor, T etrahedron L ett., 1987, 28,
2
25.
T. Hudlicky, D. Gonzalez and D. T. Gibson, Aldrichim. Acta,
1
3388.
999, 32, 35.
37 R. W. Murray, M. Singh, B. L. Williams and H. M. Moncrie†, J.
Org. Chem., 1996, 61, 1830.
4
5
D. R. Boyd and G. N. Sheldrake, Nat. Prod. Rep., 1998, 309.
S. M. Brown and T. Hudlicky, in Organic Synthesis: T heory and
Applications, ed. T. Hudlicky, JAI Press, Greenwich, CT, 1993,
vol. 2, p. 113.
38 M. Tamura and J. Kochi, Synthesis, 1971, 303.
39 A. Garcia Martinez, A. Herrera, R. Martinez, E. Teso, A. Garcia,
J. Osio, L. Pargada, R. Unanue, L. R. Subramian and M.
Hanack, J. Heterocycl. Chem., 1988, 25, 1237.
6
D. A. Widdowson, D. W. Ribbons and S. D. Thomas, Janssen
Chim. Acta, 1990, 8, 3.
40 J. K. Stille and B. L. Groh, J. Am. Chem. Soc., 1987, 109, 813.
124
New J. Chem., 2001, 25, 116È124