Chemistry Letters Vol.34, No.3 (2005)
421
Table 2. Mukaiyama–Aldol reaction of trimethylsilyl enolate
with various aldehydes catalyzed by Q-G3C10(Iꢂ)a
OSiMe3
dendrimer acts as a nanoreactor encapsulating a Lewis base cat-
alyst for the Mukaiyama–Aldol reaction of the trimethylsilyl
enolate with aldehydes. The high catalytic activity for the
Mukaiyama–Aldol reaction in toluene is ascribed to the highly
dense quaternary ammonium iodide within the dendrimer.
Q-G3-C10(I-)
OSiMe3
CO2Me
R-CHO +
R
60 oC, toluene
OMe
Time /h
Conv. /%b
Yield /%b
Entry
Aldehyde
This work was supported by a Grant-in-Aid for Scientific
Research from JSPS. We thank the center of excellence
(21COE) program ‘Creation of Integrated Ecochemistry’ of
Osaka University.
CHO
1
2
8
3
98
98
99
>99
Cl
CHO
CHO
O2N
8
3
88
88
MeO
Me
CHO
4
5
8
8
8
98
98
98
References and Notes
>99
CHO
CHO
1
2
3
For a book on dendrimers: ‘‘Dendrimers and Other Dendritic
´
Polymers,’’ ed. by J. M. J. Frechet and D. A. Tomalia, John Wiley
& Sons, New York (2001).
a) M. E. Piotti, F. Rivera, R. Bond, C. J. Hawker, and J. M. J.
Frechet, J. Am. Chem. Soc., 121, 9471 (1999). b) Y. Pan and
W. T. Ford, Macromolecules, 33, 3731 (2000).
S
96
98
94
98
6
7
CHO
8
CHO
5CHO
8
9
9
4
3
>99
>99
>99
96
98
96c
Ph
Ph
a) P. Bhyrappa, J. K. Young, J. S. Moore, and K. S. Suslick, J. Am.
Chem. Soc., 118, 5708 (1996). b) G. E. Oosterom, R. J. Haaren,
J. N. H. Reek, P. C. J. Kamer, and P. W. N. M. van Leeuwen,
Chem. Commun., 1999, 1119. c) M. Ooe, M. Murata, T. Mizugaki,
K. Ebitani, and K. Kaneda, J. Am. Chem. Soc., 126, 1604 (2004).
a) Y. Niu, L. K. Yeung, and R. M. Crooks, J. Am. Chem. Soc., 123,
6840 (2001). b) M. Ooe, M. Murata, T. Mizugaki, K. Ebitani, and
K. Kaneda, Nano Lett., 2, 999 (2002).
For recent reviews on dendritic catalysts, see: a) D. Astruc and
F. Chardac, Chem. Rev., 101, 2991 (2001). b) R. van Heerbeek,
P. C. J. Kamer, P. W. N. M. van Leeuwen, and J. N. H. Reek,
Chem. Rev., 102, 3717 (2002). c) L. J. Twyman, A. S. H. King,
and I. K. Martin, Chem. Soc. Rev., 31, 69 (2002).
‘‘Modern Aldol Reactions,’’ ed. by R. Mahrwald, Wiley-VCH,
Weinheim (2004).
CHO
10
aReaction conditions: aldehyde 0.5 mmol, silyl enolate 0.7 mmol,
Q-G3-C10(Iꢂ) 0.0036 mmol (0.05 mmol of Iꢂ), toluene 2 mL, Ar
b
c
atmosphere. Determined by GC based on aldehyde. 1,4-addi-
tion product was obtained (1,2-/1,4- = 1.9).
4
5
reaction of the trimethylsilyl enolate with various aldehydes cat-
alyzed by Q-G3-C10(Iꢂ) at 60 ꢁC. Aromatic aldehydes func-
tioned succesfully as acceptors (Entries 1–5). The heteroaromat-
ic aldehyde of 2-thiophencalbaldehyde, known to deactivate
Lewis acid catalysts,10 also afforded the corresponding aldol
product (Entry 6). Compared with the aromatic aldehydes, the
aliphatic aldehyde of n-octanal required longer reaction time
(Entry 8), which was similar to that for other Lewis base cata-
lysts.6,10 In the case of ꢁ,ꢂ-unsaturated carbonyl compound, cin-
namaldehyde gave a mixtures of 1,2- and 1,4-addition of the silyl
acetal (Entry 10).
6
7
8
9
M. T. Reetz and D. Giebel, Angew. Chem., Int. Ed., 39, 2498
(2000).
S. E. Denmark and R. A. Stavenger, Acc. Chem. Res., 33, 432
(2000).
K. Miura, T. Nakagawa, and A. Hosomi, J. Am. Chem. Soc., 124,
536 (2002).
The interaction between Q-G3-C10(Iꢂ) and 1-methoxy-
2-methyl-1-(trimethylsilyloxy)propene was examined by
13C NMR spectroscopy. Figure 2 shows the chemical shifts of
the ꢁ and ꢂ carbons of the silyl acetal at 149.2 and 90.6 ppm, re-
spectively. These signals shifted to 177.2 and 77.2 ppm, respec-
tively, in the presence of Q-G3-C10(Iꢂ).17 In contrast, treatment
of Q-G3-C10(Iꢂ) with benzaldehyde did not cause any change in
the chemical shift of the carbonyl carbon of benzaldehyde,
which indicates that benzaldehyde was not activated by Q-G3-
C10(Iꢂ). Presumably, the quaternary ammonium iodide dendri-
mer acts not as a Lewis acid but as a Lewis base catalyst to afford
the aldol products. In contrast to TBAI and THAI, the high ac-
tivity of the quaternarized dendrimers would be due to the high
polarity within the dendrimers, which might accelerate sever-
ance of the oxygen–silicon bond even in toluene solvent.13
In summary, we report the quaternary ammonium iodide
10 T. Mukaiyama, H. Fujisawa, and T. Nakagawa, Helv. Chim. Acta,
85, 4518 (2002).
11 R. Noyori, K. Yokoyama, J. Sakata, I. Kuwajima, E. Nakamura,
and M. Shimizu, J. Am. Chem. Soc., 99, 1265 (1977).
12 S. Matsukawa, N. Okano, and T. Imamoto, Tetrahedron Lett., 41,
103 (2000).
13 The aldol reaction of silyl enolates with benzaldehyde proceeds
without catalyst in polar solvents such as water and DMSO,
see: a) T.-P. Loh, L.-C. Feng, and L.-L. Wei, Tetrahedron, 56,
7309 (2000). b) Y. Genisson and L. Gorrichon, Tetrahedron Lett.,
41, 4881 (2000).
´
14 A. P. H. J. Schenning, C. Elissen-Roman, J.-W. Weener,
M. W. P. L. Baars, S. J. van der Gaast, and E. W. Meijer,
J. Am. Chem. Soc., 120, 8199 (1998).
15 a) J. L. Kreider and W. T. Ford, J. Polym. Sci., Part A: Polym.
Chem., 39, 821 (2001). b) E. Murugan, R. L. Sherman, Jr.,
H. O. Spivey, ꢂand W. T. Ford, Langmuir, 20, 8307 (2004).
ꢂ
16 BF4 and PF6 dendrimers were prepared by anion exchange of
Q-G3-C10(Iꢂ) using AgBF4 and AgPF6 in DMF. Q-G3-C16(Iꢂ);
Anal. Calcd for C358H730N30O16I14: C, 57.42; H, 9.83; N, 5.61.
Found: C, 58.12; H, 9.13; N, 5.14%. Q-G3-C10(BF4ꢂ); Anal.
Calcd for C262H538N30O16 B14F64: C, 54.89; H, 9.46; N, 7.33.
Found: C, 54.21; H, 9.85; N, 6.86%. Q-G3-C10(PF6ꢂ); Anal.
Calcd for C262H538N30O16P14F84: C, 49.21; H, 8.48; N, 6.57.
Found: C, 48.73; H, 9.02; N, 6.12%.
N+
77.2 ppm
-
90.64 ppm
I
O Si(CH3)3
O
O
Si(CH3)3
Q-G -C (I )
3
10
Cβ Cα
Cβ Cα
177.21 ppm
149.22 ppm
O
17 In 13C NMR spectrum, the chemical shifts of the ꢁ and ꢂ carbons
of the silyl enolate did not change with the parent dendrimer
Figure 2. 13C NMR shifts of the silyl acetal with quaternarized
dendrimer Q-G3-C10(Iꢂ).
G3-C10
.
Published on the web (Advance View) February 22, 2005; DOI 10.1246/cl.2005.420