Mendeleev Commun., 2020, 30, 602–603
desired amides 3a–g in 72–81% yields (for details, see Online
Supplementary Materials).
This work was supported by the Russian Foundation for Basic
Research (grant no. 19-015-00094 A). The biological part of this
work was supported by KU Leuven, Belgium.
Antiviral properties of new compounds 3a–g against HCMV
strains AD-169 and Davis were studied in a culture of HEL cells
(Table 1). Earlier, we detected a noticeable anti-HCMV activity
of 1-[8-(4-bromophenoxy)octyl]uracil containing unsubstituted
acetanilide fragment at N3 atom of the pyrimidine ring,19
however, accompanied by high cytotoxicity. The introduction of
methyl group (compound 3a) or chlorine atom (compound 3b)
into the acetanilide moiety did not improve their expected
properties. Homologous derivative 3c with (CH2)10 linker was
also toxic. Fortunately, lengthening the bridge to (CH2)12 in
compound 3d caused a significant decrease in cytotoxicity.
Product 3d did not affect the morphology and cell growth at
concentrations up to 100 µm. Moreover, its inhibitory effect
value EC50 against HCMV replication was 0.8 and 1.52 µm for
strains AD-169 and Davis, respectively, which was comparable
to that of cidofovir and was an order of magnitude better than the
effect of ganciclovir. Further modifications of structure 3d,
namely the introduction of chlorine atoms (compounds 3e and
3g) or methyl groups (compound 3f) into the acetanilide
fragment, led to complete loss of anti-HCMV activity.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2020.09.016.
References
1 P. Griffiths, I. Baraniak and M. Reeves, J. Pathol., 2015, 235, 288.
2 J. Sinclair and P. Sissons, J. Gen. Virol., 2006, 87, 1763.
3 A. L. Baroco and E. C. Oldfield, Curr. Gastroenterol. Rep., 2008, 10, 409.
4 S. E. Jackson, G. M. Mason and M. R. Wills, Virus Res., 2011, 157, 151.
5 B. Nashan, R. Gaston, V. Emery, M. D. Säemann, N. J. Mueller,
L. Couzi, J. Dantal, F. Shihab, S. Mulgaonkar, Y. S. Kim and
D. C. Brennan, Transplantation, 2012, 93, 1075.
6 L. Pereira, J. Infect. Dis., 2011, 203, 1510.
7 M. Toyoda-Akui, H. Yokomori, F. Kaneko, Y. Shimizu, H. Takeuchi,
K. Tahara, H. Yoshida, H. Kondo, T. Motoori, M. Ohbu, M. Oda and
T. Hibi, Int. J. Gen. Med., 2011, 4, 397.
8 J. Hjelmesæth, S. Sagedal, A. Hartmann, H. Rollag, T. Egeland,
M. Hagen, K. P. Nordal and T. Jenssen, Diabetologia, 2004, 47, 1550.
9 P. Caposio, S. L. Orloff and D. N. Streblow, Virus Res., 2011, 157, 204.
10 J. P. Pandey and E. C. LeRoy, Arthritis Rheum., 1998, 41, 10.
11 D. Faulds and R. C. Heel, Drugs, 1990, 39, 597.
In summary, we have discovered an effective inhibitor of
HCMV replication in cell culture, which contains a chain of 12
methylene groups linking the uracil residue and the
4-bromophenoxyl fragment. Compound 3d is superior to
ganciclovir and, despite its low solubility in water, can serve as a
basis for a targeted search for new anti-HCMV drugs.
12 E. De Clercq, Rev. Med. Virol., 1993, 3, 85.
13 P. Chrisp and S. P. Clissold, Drugs, 1991, 41, 104.
14 J. Bedard, S. May, M. Lis, L. Tryphonas, J. Drach, J. Huffman,
R. Sidwell, L. Chan, T. Bowlin and R. Rando, Antimicrob. Agents
Chemother., 1999, 43, 557.
15 I. L. Smith, I. Taskintuna, F. M. Rahhal, H. C. Powell, E. Ai,
A. J. Mueller, S. A. Spector and W. R. Freeman, Arch. Ophthalmol.,
1998, 116, 178.
Table 1 Activity of compounds 3a–g in HEL cell culture.
16 A. P. Limaye, L. Corey, D. M. Koelle, C. L. Davis and M. Boeckh,
Lancet, 2000, 356, 645.
a
Anti-HCMV activity, EC50 /µm
Cytotoxicity
17 A. Weinberg, D. A. Jabs, S. Chou, B. K. Martin, N. S. Lurain,
M. S. Forman and C. Crumpacker, J. Infect. Dis., 2003, 187, 777.
18 D. A. Babkov, M. P. Paramonova, A. A. Ozerov, A. L. Khandazhinskaya,
R. Snoeck, G. Andrei and M. S. Novikov, Acta Naturae, 2015, 7 (4),
142.
19 D. A. Babkov, A. L. Khandazhinskaya, A. O. Chizhov, G. Andrei,
R. Snoeck, K. L. Seley-Radtke and M. S. Novikov, Bioorg. Med. Chem.,
2015, 23, 7035.
20 A. Magri, A. A. Ozerov, V. L. Tunitskaya, V. T. Valuev-Elliston,
A. Wahid, M. Pirisi, P. Simmonds, A. V. Ivanov, M. S. Novikov and
A. H. Patel, Sci. Rep., 2016, 6, 29487.
21 M. P. Paramonova, A. A. Ozerov, A. O. Chizhov, R. Snoeck, G. Andrei,
A. L. Khandazhinskaya and M. S. Novikov, Mendeleev Commun., 2019,
29, 638.
Compound
Morphology, Cell growth,
AD-169 strain Davis strain
b
c
MEC/µm
GI50 /µm
d
3a
<0.032
<0.032
0.032
0.8
<0.032
<0.032
0.032
1.52
–
³0.032
0.16
0.8
d
3b
–
3c
86.77
>100
3d
>100
20
d
3e
>20
>20
–
d
3f
>20
>20
>20
>20
100
–
d
3g
100
–
Ganciclovir
Cidofovir
7.05
1.01
4.73
1.27
350
>350
>300
300
22 M. S. Novikov, D.A. Babkov, M. P. Paramonova,A. L. Khandazhinskaya,
A. A. Ozerov, A. O. Chizhov, G. Andrei, R. Snoeck, J. Balzarini and
K. L. Seley-Radtke, Bioorg. Med. Chem., 2013, 21, 4151.
a Concentration required to reduce virus plaque formation by 50% at virus
input of 100 plaque forming units (PFU). b Minimum concentration that
causes
a microscopically detectable alteration of cell morphology.
c Concentration required to reduce cell growth by 50%. d Not determined.
Received: 19th April 2020; Com. 20/6199
– 603 –