Please do not adjust margins
Chemical Science
Page 4 of 5
ARTICLE
Journal Name
2017, 8, 1–8; (d) L. Bering, M. Vogt, F.DMO.I:P1a0u.1l0u3s9s/eCn9SaCn0d56A6.8PH.
Antonchick, Org. Lett., 2018, 20, 4077–4080.
We thank EPSRC (Postdoctoral Fellowship to Z.H.; Established
Career Fellowship to D.J.P.) and The University of Manchester
(Lectureship to G.J.P.P.) for their generous support.
10 For the reactions of benzothiophene S-oxides with phenols,
see: (a) H. J. Shrives, J. A. Fernández-Salas, C. Hedtke, A. P.
Pulis and D. J. Procter, Nat. Commun., 2017, 8, 14801; (b) Z.
He, H. J. Shrives, J. A. Fernández-Salas, A. Abengózar, J.
Neufeld, K. Yang, A. P. Pulis and D. J. Procter, Angew. Chem.
Int. Ed., 2018, 57, 5759–5764; (c) K. Yang, A. P. Pulis, G. J. P.
Perry and D. J. Procter, Org. Lett., 2018, 20, 7498–7503.
11 For examples of interrupted Pummerer and related reactions,
see: (a) T. Kobatake, D. Fujino, S. Yoshida, H. Yorimitsu and K.
Oshima, J. Am. Chem. Soc., 2010, 132, 11838-11840; (b) K.
Murakami, H. Yorimitsu and A. Osuka, Angew. Chem. Int. Ed.,
2014, 53, 7510-7513; (c) T. Yanagi, S. Otsuka, Y. Kasuga, K.
Fujimoto, K. Murakami, K. Nogi, H. Yorimitsu and A. Osuka, J.
Am. Chem. Soc., 2016, 138, 14582-14585; (d) X. Huang and N.
Maulide, J. Am. Chem. Soc., 2011, 133, 8510-8513; (e) X.
Huang, M. Patil, C. Fares, W. Thiel and N. Maulide, J. Am.
Chem. Soc., 2013, 135, 7312-7323; (f) B. Peng, D. Geerdink, C.
Fares and N. Maulide, Angew. Chem. Int. Ed., 2014, 53, 5462-
5466; (j) B. Peng, X. Huang, L. -G. Xie and N. Maulide, Angew.
Chem. Int. Ed., 2014, 53, 8718-8721; (h) D. Kaiser, L. F. Veiros
and N. Maulide, Chem. Eur. J., 2016, 22, 4727-4732; (i) D.
Kaiser, L. F. Veiros and N. Maulide, Adv. Synth. Catal., 2017,
359, 64-77; (j) D. Kaldre, I. Klose and N. Maulide, Science,
Angew. Chem. Int. Ed., 2013, 52, 4008-4011; (l) J. A.
Fernández-Salas, A. J. Eberhart and D. J. Procter, J. Am. Chem.
Soc., 2016, 138, 790-793; (m) M. Šiaučiulis, S. Sapmaz, A. P.
Pulis and D. J. Procter, Chem. Sci., 2018, 9, 754-759; (n) M. H.
Aukland, F. J. T. Talbot, J. A. Fernández-Salas, M. Ball, A. P.
9785-9789; (o) D. Chen, Q. Feng, Y. Yang, X. -M. Cai, F. Wang
and S. Huang, Chem. Sci., 2017, 8, 1601-1606; (p) M.
Šiaučiulis, N. Ahlsten, A. P. Pulis and D. J. Procter, Angew.
Chem. Int. Ed., 2019, 58, 8779-8783; (q) L. Zhang, J. -N. He, Y.
Liang, M. Hu, L. Shang, X. Huang, L. Kong, Z. -X. Wang and B.
Peng, Angew. Chem. Int. Ed., 2019, 58, 5316-5320; (r) X.
Meng, C. Dengfeng, X. Cao, J. Luo, F. Wang and S. Huang,
Chem. Commun., 2019, 55, 12495-12498. (s) X. Huang, S.
Klimczyk and N. Maulide, Synthesis, 2012, 44, 175-183. (t) D.
Kaiser, I. Klose, R. Oost, J. Neuhaus and N. Maulide, Chem.
Rev. 2019, 119, 8701-8780.
Notes and references
1
(a) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot
and V. Snieckus, Angew. Chem. Int. Ed., 2012, 51, 5062–5085;
(b) G. Bringmann, R. Wlater and R, Weirich, Angew. Chem.
Int. Ed., 1990, 29, 977-991; (c) I. Hussain and T. Singh, Adv.
Synth. Catal., 2014, 356, 1661-1696.
(a) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215–
1292; (b) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc.
Rev., 2011, 40, 5068–5083; (c) C. Liu, H. Zhang, W. Shi and A.
Lei, Chem. Rev., 2011, 111, 1780–1824; (d) C. Liu, J. Yuan, M.
Gao, S. Tang, W. Li, R. Shi and A. Lei, Chem. Rev., 2015, 115,
12138–12204; (e) Y. Yang, J. Lan and J. You, Chem. Rev., 2017,
117, 8787-8863; (f) H. Wang, X. Gao, Z. Lv, T. Abdelilah and A.
Lei, Chem. Rev., 2019, 119, 6769–6787.
2
3
4
(a) C.-L. Sun and Z.-J. Shi, Chem. Rev., 2014, 114, 9219−9280;
(b) R. Narayan, K. Matcha and A. P. Antonchick, Chem. Eur. J.,
2015, 21, 14678–14693.
(a) S. Quideau, D. Deffieux, C. Douat-Casassus and L.
Pouységu, Angew. Chem. Int. Ed., 2011, 50, 586–621; (b) G.
Bringmann, T. Gulder, T. M. Gulder and M. Breuning, Chem.
Rev., 2011, 111, 563–639; (c) D. Parmar, E. Sugiono, S. Raja
and M. Rueping, Chem. Rev., 2014, 114, 9047–9153; (d) R.
Maji, S. C. Mallojjala and S. E. Wheeler, Chem. Soc. Rev.,
2018, 47, 1142–1158; (e) M. A. Rahim, S. L. Kristufek, S. Pan,
J. J. Richardson and F. Caruso, Angew. Chem. Int. Ed., 2019,
58, 1904–1927; (f) J. Guo, T. Suma, J. J. Richardson and H.
Ejima,
org/10.1021/acsbiomaterials.8b01507.
Z. Huang and J.-P. Lumb, ACS Catal., 2019, 9, 521–555.
ACS
Biomater.
Sci.
Eng.,
2019,
DOI
5
6
(a) H. Eickhoff, G. Jung and A. Rieker, Tetrahedron, 2001, 57,
353–364; (b) G. Bringmann and S. Tasler, Tetrahedron, 2001,
57, 331–343; (c) C. Boldron, G. Aromí, G. Challa, P. Gamez
and J. Reedijk, Chem. Commun., 2005, 5808–5810; (d) A.
Kirste, M. Nieger, I. M. Malkowsky, F. Stecker, A. Fischer and
S. R. Waldvogel, Chem. Eur. J., 2009, 15, 2273–2277; (e) A.
Kirste, G. Schnakenburg and S. R. Waldvogel, Org. Lett.,
2011, 13, 3126–3129; (f) A. Kirste, S. Hayashi, G.
Schnakenburg, I. M. Malkowsky, F. Stecker, A. Fischer, T.
Fuchigami and S. R. Waldvogel, Chem. Eur. J., 2011, 17,
14164–14169.
(a) A. Kirste, G. Schnakenburg, F. Stecker, A. Fischer and S. R.
Waldvogel, Angew. Chem. Int. Ed., 2010, 49, 971–975; (b) A.
Kirste, B. Elsler, G. Schnakenburg and S. R. Waldvogel, J. Am.
Chem. Soc., 2012, 134, 3571–3576; (c) B. Elsler, D.
Schollmeyer, K. M. Dyballa, R. Franke and S. R. Waldvogel,
Angew. Chem. Int. Ed., 2014, 53, 5210–5213; (d) A. Wiebe, D.
Schollmeyer, K. M. Dyballa, R. Franke and S. R. Waldvogel,
Angew. Chem. Int. Ed., 2016, 55, 11801–11805; (e) S. Lips, A.
Wiebe, B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke and
S. R. Waldvogel, Angew. Chem. Int. Ed., 2016, 55, 10872–
10876; (f) A. Wiebe, S. Lips, D. Schollmeyer, R. Franke and S.
R. Waldvogel, Angew. Chem. Int. Ed., 2017, 56, 14727–14731;
(g) S. Lips, D. Schollmeyer, R. Franke and S. R. Waldvogel,
Angew. Chem. Int. Ed., 2018, 57, 13325–13329.
12 For examples of interrupted Pummerer reactions involving
alkene and alkyne nucleophiles, see; (a) B. Waldecker, F.
Kraft, C. Golz and M. Alcarazo, Angew. Chem. Int. Ed., 2018,
57, 12538-12542; (b) Z. Zhang, Y. Luo, H. Du, J. Xu and P. Li,
Chem. Sci., 2019, 10, 5156-5161. See also ref. 11l, 11n and
11p.
7
13 For the homocoupling of 2-naphthols using
a
benzothiophene catalyst, see: Z. He, A. P. Pulis and D. J.
Procter, Angew. Chem. Int. Ed., 2019, 58, 7813–7817.
14 A cross-coupling procedure was low yielding and not general,
see: K. Higuchi, T. Tago, Y. Kokubo, M. Ito, M. Tayu, S.
Sugiyama and T. Kawasaki, Org. Chem. Front., 2018, 5, 3219-
3225.
15 L. H. S. Smith, S. C. Coote, H. F. Sneddon and D. J. Procter,
Angew. Chem. Int. Ed., 2010, 49, 5832−5844.
16 T. Yanagi, K. Nogi and H. Yorimitsu, Tetrahedron Lett., 2018,
59, 2951−2959.
17 X-ray crystallographic data for 3r, 3ab’, 6b, 6g, and 7d can be
found at the Cambridge Crystallographic Data Centre (CCDC);
1944706-1944710.
18 3-Aroyl[b]benzofurans are found in bioactive molecules. (a)
T. Kalai, G. Varbiro, Z. Bognar, A. Palfi, K. Hanto, B. Bognar, E.
Osz, B. Sumegi and K. Hideg, Bioorg. Med. Chem., 2005, 13,
2629-2636; (b) C. C. Felder, K. E. Joyce, E. M. Briley, M. Glass,
8
9
K. Morimoto, K. Sakamoto, T. Ohshika, T. Dohi and Y. Kita,
Angew. Chem. Int. Ed., 2016, 55, 3652–3656.
For other selected metal-free C–H/C–H couplings of phenols,
see: (a) T. Yanagi, S. Otsuka, Y. Kasuga, K. Fujimoto, K.
Murakami, K. Nogi, H. Yorimitsu and A. Osuka, J. Am. Chem.
Soc., 2016, 138, 14582–14585; (b) S. Sharma, S. K. R.
Parumala and R. K. Peddinti, J. Org. Chem., 2017, 82, 9367–
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins