Supramolecular Chemistry
661
solvent-free aqueous solution in its monomeric form. As a
result, SQ2–Hg2þ–b-cyclodextrin ensemble can sense
thiol-containing amino acids not only in the aqueous
solution but also with improved selectivity, allowing for
discrimination of thiol-containing amino acids from all
other amino acids including histidine. Furthermore, the
measuring range of thiol-containing amino acids may be
easily modulated by changing the concentration of Hg2þ
ion. Further investigation to find biological benign metal
ion for the substitution of Hg2þ is currently underway.
Acknowledgements
We greatly appreciate the financial support from NNSFC
(20873170, 20772133) and CAS (KJCX2-YW-H08, KGCX2-
YW-389).
References
(1) Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.;
Rosenberg, I.H.; D’Agostino, R.B.; Wilson, P.W.F. New
Engl. J. Med. 2002, 346, 476–483.
(2) El-Khairy, L.; Ueland, P.M.; Refsum, H.; Graham, I.M.;
Vollset, S.E. Circulation 2001, 103, 2544–2549.
(3) Chen, X.; Zhou, Y.; Peng, X.; Yoon, J. Chem. Soc. Rev.
2010, 39, 2120–2135.
(4) Ruan, Y.B.; Li, A.-F.; Zhao, J.-S.; Shen, J.-S.; Jiang, Y.-B.
Chem. Commun. 2010, 46, 4938–4940.
(5) Chen, X.; Ko, S.-K.; Kim, M.J.; Shin, I.; Yoon, J. Chem.
Commun. 2010, 46, 2751–2753.
(6) Jiang, W.; Cao, Y.; Liu, Y.; Wang, W. Chem. Commun.
2010, 46, 1944–1946.
(7) Lin, W.; Long, L.; Tan, W. Chem. Commun. 2010, 46,
1503–1505.
Figure 5. Absorbance at 648 nm (a) and fluorescence intensity
at 675 nm (b) of aqueous solutions of SQ2 (5 mM), b-
cyclodextrin (15 mM) and Hg2þ in the presence of varied
concentrations of cysteine. The concentrations of Hg2þ are
50 mM (A), 60 mM (B), 70 mM (C) and 80 mM (D), respectively.
(8) Xiong, L.; Zhao, Q.; Chen, H.; Wu, Y.; Dong, Z.; Zhou, Z.;
Li, F. Inorg. Chem. 2010, 49, 6402–6408.
(9) Durocher, S.; Rezaee, A.; Hamm, C.; Rangan, C.; Mittler,
S.; Mutus, B. J. Am. Chem. Soc. 2009, 131, 2475–2477.
(10) Yi, L.; Li, H.; Sun, L.; Liu, L.; Zhang, C.; Xi, Z. Angew.
Chem. Int. Ed. 2009, 48, 4034–4037.
(11) Lin, W.; Yuan, L.; Cao, Z.; Feng, Y.; Long, L. Chem. Eur. J.
2009, 15, 5096–5103.
(12) Li, H.; Fan, J.; Wang, J.; Tian, M.; Du, J.; Sun, S.; Sun, P.;
Peng, X. Chem. Commun. 2009, 45, 5904–5906.
(13) Zhang, X.; Ren, X.; Xu, Q.; Loh, K.P.; Chen, Z. Org. Lett.
2009, 11, 1257–1260.
(14) Sreejith, S.; Divya, K.P.; Ajayaghosh, A. Angew Chem. Int.
Ed. 2008, 47, 7883–7887.
(15) Jiang, W.; Fu, Q.; Fan, H.; Ho, J.; Wang, W. Angew Chem.
Int. Ed. 2007, 46, 8445–8448.
(16) Tang, B.; Xing, Y.; Li, P.; Zhang, N.; Yu, F.; Yang, G.
J. Am. Chem. Soc. 2007, 129, 11666–11667.
concentration of Hg2þ. Such an interesting feature still
remains for SQ2–Hg2þ–b-cyclodextrin in water.
As shown in Figure 5, when the concentration of Hg2þ
is 50 mM, the absorption and fluorescence turn-on of the
system begins at 32 mM of cysteine and completes at
48 mM of cysteine. The linear detection range is from 36 to
48 mM as shown in Figure S7 (available online)
(correlation coefficient ¼ 0.996). In the case of 60 mM of
Hg2þ, the ‘turn-on’ begins at 40 mM and completes at
56 mM. In a word, with the increase in the concentration of
Hg2þ, the response window of SQ2–Hg2þ–b-cyclodex-
trin shifts to higher concentration level of cysteine. By
changing the concentration of Hg2þ to 300 mM, the
cysteine in the range of 275–290 mM, the concentrations
out of the normal level (250–275 mM) of tCys in plasma,
may be detected (Figure S8, available online).
(17) Rusin, O.; Luce, N.N.St.; Agbaria, R.A.; Escobedo, J.O.;
Jiang, S.; Warner, I.M.; Dawan, F.B.; Lian, K.; Strongin,
R.M. J. Am. Chem. Soc. 2004, 126, 438–439.
(18) Liu, J.; Bao, C.; Zhong, X.; Zhao, C.; Zhu, L. Chem.
Commun. 2010, 46, 2971–2973.
(19) Shiu, H.-Y.; Chong, H.-C.; Leung, Y.-C.; Wong, M.-K.;
Che, C.-M. Chem. Eur. J. 2010, 16, 3308–3313.
(20) Lin, W.; Long, L.; Yuan, L.; Cao, Z.; Chen, B.; Tan, W.
Org. Lett. 2008, 10, 5577–5580.
4. Conclusions
In summary, the host–guest interactions between SQ2 and
b-cyclodextrin are utilised to dissolve SQ2 in organic