Scandium Ion-Promoted Reduction of Heterocyclic NdN
A R T I C L E S
attracted considerable interest in relation to the catalytic role
of metal ions in the redox reactions of nicotinamide coenzymes
in the native enzymatic system.1-4,11,12 Metal ions acting as
Lewis acids are known to promote electron-transfer reactions,
We report herein that hydride transfer from an NADH
analogue to 3,6-diphenyl-1,2,4,5-tetrazine (Ph2Tz), which would
otherwise be difficult to reduce, occurs efficiently in the
presence of Sc(OTf)3 (OTf ) OSO2CF3) in MeCN. 1,2,4,5-
Tetrazines containing a NdN double bond are valuable electron-
deficient 4π components that have been utilized in Diels-Alder
reactions with inverse electron demanding, making a large
21
where metal ions bind to the product radical anions produced
in the electron-transfer reactions.1
3-16
Both thermal and pho-
tochemical redox reactions that would otherwise be unlikely to
2
2-24
occur are made possible to proceed efficiently by the catalysis
variety of valuable compounds available.
The kinetic
of metal ions on the electron-transfer steps.1
3-16
Among metal
analysis of the Sc -promoted hydride transfer reactions involv-
ing kinetic deuterium isotope effects as compared with the
authentic electron-transfer reactions provides valuable informa-
3+
ions, rare-earth metal ions have particularly attracted consider-
able attention as much more effective Lewis acids than divalent
metal ions such as Mg2 and Zn in various carbon-carbon
+
2+
tion for the Sc -promoted electron-transfer step and the
3+
bond-forming reactions due to the strong affinity to carbonyl
subsequent proton-transfer step in the overall hydride transfer
reaction. The key intermediate for the Sc -promoted reduction
oxygen.1
7-19
In particular, scandium ion (Sc ) has recently been
3+
3+
reported to accelerate electron-transfer reduction of p-benzo-
quinone derivatives much more efficiently than any other metal
ion, including lanthanide ions.20 The reactions of NADH
analogues with p-benzoquinone derivatives, which are normally
good hydride acceptors, are also accelerated most remarkably
of Ph2Tz is found to be the complex formed between the radical
3+
anion of Ph2Tz and Sc , which is detected successfully by ESR
spectroscopy in this study. The effects of counterions have also
been studied to reveal the relation between the electron transfer
and the hydride transfer reactions.
3+ 20
by Sc . In this case, however, efficient [2 + 3] cycloaddition
reactions of NADH analogues with p-benzoquinone derivatives
rather than the hydride transfer reactions occur in the presence
of scandium triflate [Sc(OTf)3] in MeCN.20 Moreover, there has
so far been no report on the metal ion-promoted hydride transfer
from an NADH analogue to hydride acceptors other than
carbonyl compounds, which would be difficult to reduce without
the metal ion. The effects of counterions on the metal ion-
promoted electron transfer or hydride transfer have yet to be
examined.
Experimental Section
The standard procedures of experiments including product analysis
and kinetic measurements are given in the Supporting Information (S1).
2
Materials. The preparation of 10-methyl-9,10-dihydroacridine (AcrH )
4a
and the dideuterated compound (AcrD
The dimeric 1-benzyl-1,4-dihydronicotinamide dimer [(BNA)
prepared according to the literature procedure.25 Cobalt(II) tetraphen-
2
) was described previously.
2
] was
2
6
ylporphyrin (CoTPP) was prepared as given in the literature. 10,10′-
Dimethyl-9,9′-biacridine [(AcrH) ] was prepared by the one-electron
reduction of 10-methylacridinium perchlorate by hexamethylditin.
Scandium triflate [Sc(OTf) ] was prepared by the procedure reported
2
2
7
(
11) (a) Sigman, D. S.; Hajdu, J.; Creighton, D. J. In Bioorganic Chemistry;
3
van Tamelen, E. E., Ed.; Academic Press: New York, 1978; Vol. IV, p
20
13
2
elsewhere. Scandium triflate was characterized by C NMR in D O
3
85. (b) Gase, R. A.; Pandit, U. K. J. Am. Chem. Soc. 1979, 101, 7059. (c)
28
Ohno, A.; Yamamoto, H.; Oka, S.; J. Am. Chem. Soc. 1981, 103, 2041.
as compared with the data for Yb(OTf)
,1,1-Trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide, [Sc-
(NTf ], was obtained commercially from Aldrich. The scandium salt
of tetrakis(pentafluorophenyl)borate [Sc[B(C ] was prepared by
3
.
(
d) Ohno, A.; Shio, T.; Yamamoto, H.; Oka, S. J. Am. Chem. Soc. 1981,
1
1
03, 2045. (e) Powell, M. F.; Bruice, T. C. J. Am. Chem. Soc. 1983, 105,
014, 7139.
1
2 3
)
(
12) (a) Fukuzumi, S.; Nishizawa, N.; Tanaka, T. J. Chem. Soc., Perkin Trans.
6 5 4 3
F ) ]
2
1985, 371. (b) Ishikawa, M.; Fukuzumi, S. J. Chem. Soc., Faraday Trans.
990, 86, 3531.
the following procedure. A powder form of ion-exchange resin
(DOWEX 50WX8-200, 0.5 g) obtained from Ardrich was suspended
1
(
13) (a) Fukuzumi, S. Bull. Chem. Soc. Jpn. 1997, 70, 1. (b) Fukuzumi, S.;
Itoh, S. In AdVances in Photochemistry; Neckers, D. C., Volman, D. H.,
von B u¨ nau, G., Eds.; Wiley: New York, 1998; Vol. 25, pp 107-172.
14) Fukuzumi, S. In Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-
VCH: Weinheim, 2001; Vol. 4, pp 3-67.
(
(
(20) Fukuzumi, S.; Fujii, Y.; Suenobu, T. J. Am. Chem. Soc. 2001, 123, 10191.
(21) Dihydrotetrazines are known as organic electron donors; see: (a) Gerson,
F.; Skorianetz, W. HelV. Chim. Acta 1969, 52, 169. (b) Skorianetz, W.;
Kov a¨ ts, E. sz. HelV. Chim. Acta 1972, 55, 1404. (c) Russell, G. A.; Konaka,
R.; Strom, E. T.; Danen, W. C.; Chang, K.-U.; Kaupp, G. J. Am. Chem.
Soc. 1968, 90, 4646.
(22) (a) Sauer, J. 1,2,4,5-Tetrazines. In ComprehensiVe Heterocyclic Chemistry
II; Katritzky, A. R., Rees, C. W., Scriven, E. F., Eds.; Permagon Press:
Oxford, 1996; Vol. 6, pp 901-957. (b) Sauer, J.; B a¨ uerlein, P.; Ebenbeck,
W.; Schuster, J.; Sellner, I.; Sichert, H.; Stimmelmayr, H. Eur. J. Org.
Chem. 2002, 791. (c) Sauer, J.; B a¨ uerlein, P.; Ebenbeck, W.; Gousetis, C.;
Sichert, H.; Troll, T.; Utz, F.; Wallfahrer, U. Eur. J. Org. Chem. 2001,
2629. (d) Sauer, J.; Pabst, G. R.; Holland, U.; Kim, H.-S.; Loebbecke, S.
Eur. J. Org. Chem. 2001, 697. (e) Sauer, J.; Heldmann, D. K.; Hetzenegger,
J.; Krauthan, J.; Sichert, H.; Schuster, J. Eur. J. Org. Chem. 1998, 2885,
5.
(23) (a) Boger, D. L. Chem. ReV. 1986, 86, 781. (b) Boger, D. L.; Weinreb, S.
M. Hetero Diels-Alder Methodology in Organic Synthesis; Organic
Chemistry Monograph 47; Academic: New York, 1987; Chapter 10. (c)
Boger, D. L. J. Heterocycl. Chem. 1996, 33, 1519-1531. (d) Boger, D.
L.; Hong, J. J. Am. Chem. Soc. 2001, 123, 8515. (e) Boger, D. L.; Schaum,
R. P.; Garbaccio, R. M. J. Org. Chem. 1998, 63, 6329. (f) Boger, D. L.;
Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc.
1999, 121, 54. (g) Girardot, M.; Nomak, R.; Snyder, J. K. J. Org. Chem.
1998, 63, 10063. (h) Wijnen, J. W.; Zavarise, S.; Engberts, J. B. F. N. J.
Org. Chem. 1996, 61, 2001. (i) Benson, S. C.; Lee, L.; Yang, L.; Snyder,
J. K. Tetrahedron 2000, 56, 1165. (j) Wan, Z. K.; Woo, G. H. C.; Snyder,
J. K. Tetrahedron 2001, 57, 5497.
15) (a) Fukuzumi, S.; Okamoto, T. J. Am. Chem. Soc. 1993, 115, 11600. (b)
Itoh, S.; Kawakami, H.; Fukuzumi, S. J. Am. Chem. Soc. 1998, 120, 7271.
(
4
c) Itoh, S.; Kawakami, H.; Fukuzumi, S. J. Am. Chem. Soc. 1997, 119,
39. (d) Itoh, S.; Kawakami, H.; Fukuzumi, S. Biochemistry 1998, 37, 6562.
16) (a) Fukuzumi, S.; Okamoto, T.; Otera, J. J. Am. Chem. Soc. 1994, 116,
503. (b) Fukuzumi, S.; Tanaka, T. In Photoinduced Electron Transfer,
Fox, M. A.; Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Part C, Chapter
1, pp 636-687.
(
5
1
(
17) (a) Kagan, H. B.; Namy, J. L. Tetrahedron 1986, 42, 6573. (b) Molander,
G. A. Chem. ReV. 1992, 92, 29. (c) Imamoto, T. Lanthanides in Organic
Synthesis; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W., Eds.; Academic
Press: London, 1994. (d) Kobayashi, S. Synlett 1994, 689. (e) Marshmann,
R. W. Aldrichim. Acta 1995, 28, 77. (f) Inanaga, J.; Yamaguchi, M. In
New Aspects of Organic Chemistry; Yoshida, Z.; Shiba, T.; Ohshiro, Y.,
Eds.; VHC: New York, 1989; Chapter 4, p 55. (g) Molander, G. A.; Harris,
C. R. Chem. ReV. 1996, 96, 307. (h) Shibasaki, M.; Sasai, H.; Arai, T.
Angew. Chem., Int. Ed. Engl. 1997, 36, 1237. (i) Kobayashi, S.; Manabe,
K. Acc. Chem. Res. 2002, 35, 209.
(
18) (a) Kobayashi, S.; Nagayama, S.; Busujima, T. J. Am. Chem. Soc. 1998,
1
20, 8287. (b) Kobayashi, S.; Ishitani, H. J. Am. Chem. Soc. 1994, 116,
083. (c) Marko, I. E.; Evans, G. R. Tetrahedron Lett. 1994, 35, 2771. (d)
4
Kawada, A.; Mitamura, S.; Kobayashi, S. Chem. Commun. 1996, 183. (e)
Kobayashi, S.; Araki, M.; Hachiya, I. J. Org. Chem. 1994, 59, 3758.
19) (a) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org. Chem.
(
1
996, 61, 4560. (b) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H
J. Am. Chem. Soc. 1995, 117, 4413, 6639. (c) Kobayashi, S.; Nagayama,
S. J. Am. Chem. Soc. 1998, 120, 2985. (d) Kobayashi, S. Synlett 1994,
(24) Tetrazine has recently been employed as a diene in the Diels-Alder reaction
with C60; see: Miller, G. P.; Tetreau, M. C. Org. Lett. 2000, 2, 3091.
(25) Wallenfels, K.; Gellrich, M. Chem. Ber. 1959, 92, 1406.
(26) Shirazi, A.; Goff, H. M. Inorg. Chem. 1982, 21, 3420.
(27) Fukuzumi, S.; Kitano, T.; Mochida, K. J. Am. Chem. Soc. 1990, 112, 3246.
(28) Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590.
6
89. (e) Kobayashi, S.; Nagayama, S. J. Org. Chem. 1996, 61, 2256. (f)
Kobayashi, S.; Nagayama, S. J. Am. Chem. Soc. 1996, 118, 8977. (g) Bisi
Castellani, C.; Carugo, O.; Giusti, M.; Leopizzi, C.; Perotti, A.; Invernizzi
Gamba, A.; Vidari, G. Tetrahedron 1996, 52, 11045. (h) Lac oˆ te, E.; Renaud,
P. Angew. Chem., Int. Ed. Engl. 1998, 37, 2259.
J. AM. CHEM. SOC.
9
VOL. 124, NO. 42, 2002 12567