Edge Article
Chemical Science
performed over a pH range of 2.0–12.0. Three experiments with
varying ratios of water : octanol were performed, allowing for
a standard deviation to be determined from the tting of all
measurements. MBI sample sizes were #0.5 mg for both pKa
and log P measurements.
2 Y. Yang, X. Q. Hu, Q. S. Li, X. X. Zhang, B. F. Ruan, J. Xu and
C. Liao, Curr. Top. Med. Chem., 2016, 16, 384–396.
3 J. A. Jacobsen, J. L. Fullagar, M. T. Miller and S. M. Cohen, J.
Med. Chem., 2011, 54, 591–602.
4 C. V. Credille, Y. Chen and S. M. Cohen, J. Med. Chem., 2017,
60, 9912.
5 C. V. Credille, C. N. Morrison, R. W. Stokes, B. L. Dick,
Y. Feng, J. Sun, Y. Chen and S. M. Cohen, J. Med. Chem.,
2019, 62, 9438–9449.
6 A. Y. Chen, P. W. Thomas, A. C. Stewart, A. Bergstrom,
Z. Cheng, C. Miller, C. R. Bethel, S. H. Marshall,
C. V. Credille, C. L. Riley, R. C. Page, R. A. Bonomo,
M. W. Crowder, D. L. Tierney, W. Fast and S. M. Cohen, J.
Med. Chem., 2017, 60, 7267–7283.
7 C. Perez, J. Li, F. Parlati, M. Rouffet, Y. Ma, A. L. Mackinnon,
T. F. Chou, R. J. Deshaies and S. M. Cohen, J. Med. Chem.,
2017, 60, 1343–1361.
8 G. A. Patani and E. J. LaVoie, Chem. Rev., 1996, 96, 3147–
3176.
Computational methodology
All DFT computations were performed using Gaussian 09.31 All
geometry optimizations were performed at the uB97x-D/def2-
TZVPP level of theory.24,32,33 Frequency calculations were per-
formed to conrm that each structure was in fact a local
minimum (stationary point) on the potential energy surface. All
computed free energies were calculated assuming standard
state conditions of 1 atm in the gas phase at 298 K. Initial
coordinates for computation were prepared using Gaussview
5.0.9 and Avogadro 1.2.0.34–36 Pymol 2.3 was used to render
images of the DFT-optimized structures presented herein.37
9 H. L. Friedman, Natl. Acad. Sci., 1951, 206, 295–362.
10 T. Lassila, J. Hokkanen, S. M. Aatsinki, S. Mattila,
M. Turpeinen and A. Tolonen, Chem. Res. Toxicol., 2015,
28, 2292–2303.
11 H. Pajouhesh and G. R. Lenz, NeuroRx, 2005, 2, 541–553.
12 B. L. Dick and S. M. Cohen, Inorg. Chem., 2018, 57, 9538–
9543.
13 C. Ballatore, D. M. Huryn and A. B. Smith 3rd,
ChemMedChem, 2013, 8, 385–395.
14 I. I. F. Boogaerts and S. P. Nolan, J. Am. Chem. Soc., 2010, 132,
8858–8859.
15 N. J. Hrib, J. G. Jurcak, K. L. Burgher, P. G. Conway,
H. B. Hartman, L. L. Kerman, J. E. Roehr and A. T. Woods,
J. Med. Chem., 1994, 37, 2308–2314.
16 D. Cundy and G. Simpson, Aust. J. Chem., 1996, 49, 199–203.
17 O. Barba, G. J. Dawson, T. M. Krulle, R. J. Rowley, D. Smyth
Conflicts of interest
The authors declare the following competing nancial inter-
est(s): S. M. C. is a co-founder, has an equity interest, and
receives income as member of the Scientic Advisory Board for
Cleave Therapeutics and is a co-founder, has an equity interest,
and a member of the Scientic Advisory Board for Forge Ther-
apeutics. Both companies may potentially benet from the
research results of certain projects in the laboratory of S. M. C.
The terms of this arrangement have been reviewed and
approved by the University of California, San Diego in accor-
dance with its conict of interest policies.
Acknowledgements
Support was provided by the National Institutes of Health (R01
GM098435; R01 AI149444). B. L. D. was supported by the
National Institute of Health Molecular Biophysics Training
Grant (T32GM008326-26). Computational studies by A. P. were
supported by the National Science Foundation (MCB-1020765),
National Institute of Health (R01 GM31749 and R01
GM095970), Howard Hughes Medical Institute, National
Biomedical Computation Resource (NBCR), and NSF super-
computer centers through Prof. J. Andrew McCammon (U.C.
San Diego); we also thank Prof. McCammon for helpful
discussions. A. P. thanks M. D. Burkart for nancial support
through the National Institutes of Health (NIH GM095970). We
thank Prof. Arnold Rheingold, Dr Milan Gembicky, and Dr
Curtis Moore (U.C. San Diego) for assistance with crystallo-
graphic data collection and structure determination. We also
thank Dr Yongxuan Su for mass spectrometry sample analysis at
The Molecular Mass Spectrometry Facility at U.C. San Diego.
and
G.
H.
Thomas,
Prosidion
Limited,
UK
WO2006085118A2, 2006.
18 A. L. Gryshuk and J. Perkins, Lawrence Livermore National
Security, LLC, USA, US20110213124A1, 2011.
19 D. T. Puerta and S. M. Cohen, Inorg. Chem., 2003, 42, 3423–
3430.
20 S. M. George, J. H. Nam, G. Y. Lee, J. H. Han, B. K. Park,
C. G. Kim, D. J. Jeon and T.-M. Chung, Eur. J. Inorg. Chem.,
2016, 2016, 5539–5546.
21 J. H. Lee, E. A. Jung, G. Y. Lee, S. H. Han, B. K. Park, S. W. Lee,
S. U. Son, C. G. Kim and T.-M. Chung, ChemistrySelect, 2018,
3, 6691–6695.
22 T. Heinrich, H. P. Buchstaller, B. Cezanne, F. Rohdich,
J. Bomke, M. Friese-Hamim, M. Krier, T. Knochel,
D. Musil, B. Leuthner and F. Zenke, Bioorg. Med. Chem.
Lett., 2017, 27, 551–556.
23 D. Schonherr, U. Wollatz, D. Haznar-Garbacz, U. Hanke,
K. J. Box, R. Taylor, R. Ruiz, S. Beato, D. Becker and
W. Weitschies, Eur. J. Pharm. Biopharm., 2015, 92, 155–170.
References
1 A. Y. Chen, R. N. Adamek, B. L. Dick, C. V. Credille, 24 J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys.,
C. N. Morrison and S. M. Cohen, Chem. Rev., 2019, 119,
1323–1455.
2008, 10, 6615–6620.
This journal is © The Royal Society of Chemistry 2020
Chem. Sci.