68
W. Shen et al. / Applied Catalysis A: General 392 (2011) 57–68
feed concentration increased the disappearance of furfural and the
selectivity to dimer on both catalysts. Increasing the catalyst to
feed ratio from 1/60 to 1/6 has no obvious effect over MgO–ZrO2,
but significantly increased the disappearance of furfurals and low-
ered the monomer to dimer ratio over Nit-NaY. Nit-NaY was more
sensitive towards water and catalyst to feed ratio for the studied
reactions compared to MgO–ZrO2. Nit-NaY showed higher selec-
tivity towards monomer than MgO–ZrO2 in the entire range of
furfural disappearance. Nit-NaY was found to be unstable in the
water–methanol solvent with the loss in catalytic activity due to
leaching of the framework nitrogen, while MgO–ZrO2 showed good
recyclability.
[16] A.-J. Han, H.-Y. He, J. Guo, H. Yu, Y.-F. Huang, Y.-C. Long, Micropor. Mesopor.
Mater. 79 (2005) 177–184.
[17] S. Ernst, M. Hartmann, S. Sauerbeck, T. Bongers, Appl. Catal. A: Gen. 200 (2000)
117–123.
[18] K. Narasimharao, M. Hartmann, H.H. Thiel, S. Ernst, Micropor. Mesopor. Mater.
90 (2006) 377–383.
[19] J. Guo, A.-J. Han, H. Yu, J.-P. Dong, H. He, Y.-C. Long, Micropor. Mesopor. Mater.
94 (2006) 166–172.
[20] A.-J. Han, J. Guo, H. Yu, Y. Zeng, Y.-F. Huang, H.-Y. He, Y.-C. Long, ChemPhysChem
7 (2006) 607–613.
[21] K.D. Hammond, M. Gharibeh, G.A. Tompsett, F. Dogan, A.V. Brown, C.P. Grey,
S.M. Auerbach, W.C. Conner Jr., Chem. Mater. 22 (2009) 130–142.
[22] F. Dogan, K.D. Hammond, G.A. Tompsett, H. Huo, W.C. Conner Jr., S.M. Auerbach,
C.P. Grey, J. Am. Chem. Soc. 131 (2009) 11062–11079.
[23] K.D. Hammond, S.M. Auerbach, in: I. Halasz (Ed.), Silica and Silicates in Modern
Catalysis, Research Signpost, Kerala, India, 2010.
CO2 TPD-MS and XRD distinguish three types of basic sites on
MgO–ZrO2, attributed to LC Lewis basic sites, Mg2+–O2− pairs and
surface hydroxyl groups. The latter two sites are likely the catalyt-
ically active sites for liquid phase aldol condensation of furfurals
with acetone/propanal. Due to the strong adsorption of CO2 on NaY,
CO2 TPD-MS and CO2 TPD–TGA are not deemed suitable to quantify
the basic sites over Nit-NaY. Silicon 29 MAS NMR of the fresh and
spent Nit-NaY disclosed that the substituted nitrogens are located
in 1N or 2N environments, where one or two of oxygen atoms
in TO4 units were replaced by nitrogen. The base strength of Nit-
NaY is in between of Mg2+–O2− pairs and Mg(OH)2. The significant
leaching of nitrogen from Nit-NaY during the aldol condensation in
water–methanol solvent was observed.
These results provide the first clear evidence of shape selectiv-
ity in nitrogen-substituted zeolites. This proof-of-principle is an
important step forward for providing a new tool in the arsenal of
heterogeneous catalysis, especially as this field pursues solutions
to problems in biomass refining and biofuel production. Further
research is required to improve the stability and the selectivity of
basic zeolites, either by modifying reaction conditions, solvents,
nitridation methods, or the basic sites themselves.
[24] J.H. Zhu, Y. Chun, Q.-h. Xu, Y. Qin, Mater. Lett. 33 (1998) 331–335.
[25] Y. Xia, R. Mokaya, J. Phys. Chem. C 112 (2008) 1455–1462.
[26] C.W. Jones, K. Tsuji, M.E. Davis, Nature 393 (1998) 52–54.
[27] D. Lesthaeghe, V. Van Speybroeck, G.B. Marin, M. Waroquier, J. Phys. Chem. B
109 (2005) 7952–7960.
[28] A. Cauvel, D. Brunel, F. Di Renzo, P. Moreau, F. Fajula, in: H.K. Beyer, H.G. Karge,
I. Kiricsi, J.B. Nagy (Eds.), Studies in Surface Science and Catalysis, Elsevier, 94,
1995, pp. 286–293.
[29] A. Corma, P. Viruela, L. Fernández, J. Mol. Catal. A: Chem. 133 (1998) 241–250.
[30] R. Astala, S.M. Auerbach, J. Am. Chem. Soc. 126 (2004) 1843–1848.
[31] J. EI Haskouri, S. Cabrera, F. Sapin˜a, J. Latorre, C. Guillem, A. Beltrán-Porter, D.
Beltrán-Porter, M.D. Marcos, P. Amorós, Adv. Mater. 13 (2001) 192–195.
[32] Y. Xia, R. Mokaya, Angew. Chem. Int. Ed. 42 (2003) 2639–2644.
[33] C. Zhang, Q. Liu, Z. Xu, J. Non-Cryst. Solids 351 (2005) 1377–1382.
[34] N. Chino, T. Okubo, Micropor. Mesopor. Mater. 87 (2005) 15–22.
[35] J. Wang, Q. Liu, Micropor. Mesopor. Mater. 83 (2005) 225–232.
[36] M.J. Climent, A. Corma, V. Fornés, A. Frau, R. Guil-López, S. Iborra, J. Primo, J.
Catal. 163 (1996) 392–398.
[37] X. Guan, F. Zhang, G. Wu, N. Guan, Mater. Lett. 60 (2006) 3141–3144.
[38] J. Xiong, Y. Ding, H. Zhu, L. Yan, X. Liu, L. Lin, J. Phys. Chem. B 107 (2003)
1366–1369.
[39] K.D. Hammond, F. Dogan, G.A. Tompsett, V. Agarwal, W.C. Conner, C.P. Grey,
S.M. Auerbach, J. Am. Chem. Soc. 130 (2008) 14912–14913.
[40] C. Zhang, Z. Xu, K. Wan, Q. Liu, Appl. Catal. A: Gen. 258 (2004) 55–61.
[41] G.W. Huber, J.A. Dumesic, Catal. Today 111 (2006) 119–132.
[42] R. Xing, A.V. Subrahmanyam, H. Olcay, W. Qi, G.P. van Walsum, H. Pendse, G.W.
Huber, Green Chem. 12 (2010) 1933–1946.
[43] J.N. Chheda, J.A. Dumesic, Catal. Today 123 (2007) 59–70.
[44] C.J. Barrett, J.N. Chheda, G.W. Huber, J.A. Dumesic, Appl. Catal. B: Environ. 66
(2006) 111–118.
Acknowledgements
[45] G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Science 308 (2005)
1446–1450.
[46] N. Fakhfakh, P. Cognet, M. Cabassud, Y. Lucchese, M.D. de Los Ríos, Chem. Eng.
Process.: Process Intensification 47 (2008) 349–362.
[47] M.A. Aramendía, V. Borau, C. Jiménez, A. Marinas, J.M. Marinas, J.R. Ruiz, F.J.
Urbano, J. Mol. Catal. A: Chem. 218 (2004) 81–90.
[48] M.A. Aramendía, V. Boráu, C. Jiménez, A. Marinas, J.M. Marinas, J.A. Navío, J.R.
Ruiz, F.J. Urbano, Colloids Surf. A 234 (2004) 17–25.
The author would like to thank for the financial support by the
United States Department of Energy (DOE) (DE-FG02-07ER15918
and DE-FG02-96ER14681), and an NSF-MRI grant (0722802). We
also thank Vishal Agarwal and Dr. A. V. Subrahmanyam for helpful
discussions.
[49] R. Vidruk, M.V. Landau, M. Herskowitz, M. Talianker, N. Frage, V. Ezersky, N.
Froumin, J. Catal. 263 (2009) 196–204.
[50] M. Solache, I. García, P. Bosch, S. Bulbulian, A. Blumenfeld, J. Fripiat, Micropor.
Mesopor. Mater. 21 (1998) 19–25.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[51] P.B. Weisz, V.J. Frilette, J. Phys. Chem. 64 (1960) 382–1382.
[52] P.B. Weisz, W.O. Haag, P.G. Rodewald, Science 206 (1979) 57–58.
[53] T.R. Carlson, T.P. Vispute, G.W. Huber, ChemSusChem 1 (2008) 397–400.
[54] B. Smit, T.L.M. Maesen, Nature 451 (2008) 671–678.
[55] V. Agarwal, G.W. Huber, W.C. Conner Jr., S.M. Auerbach, J. Phys. Chem. C, sub-
mitted for publication.
References
[56] V. Agarwal, G.W. Huber, W.C. Conner Jr., S.M. Auerbach, J. Catal. 270 (2010)
249–255.
[57] V. Agarwal, G.W. Huber, W.C. Conner Jr., S.M. Auerbach, J. Catal. 269 (2010)
53–63.
[58] S. Ernst, M. Hartmann, T. Hecht, P. Cremades Jaén, S. Sauerbeck, G.G.R. Aiello,
F. Testa, Stud. Surf. Sci. Catal. 142 (2002) 549–556.
[59] J.J. Benítez, P. Malet, I. Carrizosa, J.A. Odriozola, R. Conanec, R. Marchand, Y.
Laurent, J. Eur. Ceram. Soc. 17 (1997) 1979–1982.
[60] J.J. Benítez, A. Díaz, Y. Laurent, J.A. Odriozola, Appl. Catal. A: Gen. 176 (1999)
177–187.
[61] F. King, G.J. Kelly, Catal. Today 73 (2002) 75–81.
[62] V.K. Díez, C.R. Apesteguía, J.I. Di Cosimo, J. Catal. 240 (2006) 235–244.
[63] E. Knözinger, K.-H. Jacob, S. Singh, P. Hofmann, Surf. Sci. 290 (1993) 388–
402.
[64] H. Kabashima, H. Hattori, Catal. Today 44 (1998) 277–283.
[65] G. Zhang, H. Hattori, K. Tanabe, Appl. Catal. 36 (1988) 189–197.
[66] M.J. Climent, A. Corma, R. Guil-Lopez, S. Iborra, J. Primo, Catal. Lett. 59 (1999)
33–38.
[1] Y. Ono, T. Baba, Catal. Today 38 (1997) 321–337.
[2] Y. Ono, J. Catal. 216 (2003) 406–415.
[3] H. Hattori, Appl. Catal. A: Gen. 222 (2001) 247–259.
[4] A. Corma, S. Iborra, C.G. Bruce, K. Helmut, Adv. Catal. 49 (2006) 239–302.
[5] R.J. Davis, J. Catal. 216 (2003) 396–405.
[6] S.M. Auerbach, K.A. Carrado, P.K. Dutta (Eds.), Handbook of Zeolite Sicence and
Technology, Marcel Dekker, New York, 2004.
[7] M. Huang, A. Adnot, S. Kaliaguine, J. Am. Chem. Soc. 114 (2002) 10005–10010.
[8] J. Zhu, Y. Chun, Y. Wang, Q. Xu, Catal. Today 51 (1999) 103–111.
[9] L.R.M. Martens, P.J. Grobet, W.J.M. Vermeiren, P.A. Jacobs, Stud. Surf. Sci. Catal.
28 (1986) 935–941.
[10] P.E. Hathaway, M.E. Davis, J. Catal. 116 (1989) 263–278.
[11] G.J. Suppes, M.A. Dasari, E.J. Doskocil, P.J. Mankidy, M.J. Goff, Appl. Catal. A: Gen.
257 (2004) 213–223.
[12] I. Rodriguez, S. Iborra, F. Rey, A. Corma, Appl. Catal. A: Gen. 194–195 (2000)
241–252.
[13] B.M. Choudary, M.L. Kantam, P. Sreekanth, T. Bandopadhyay, F. Figueras, A. Tuel,
J. Mol. Catal. A: Chem. 142 (1999) 361–365.
[14] X. Zhang, E.S. Man Lai, R. Martin-Aranda, K.L. Yeung, Appl. Catal. A: Gen. 261
(2004) 109–118.
[67] M.J. Climent, A. Corma, V. Fornés, R. Guil-Lopez, S. Iborra, Adv. Syn. Catal. 344
(2002) 1090–1096.
[68] R.G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533–3539.
[15] K.-i. Shimizu, E. Hayashi, T. Inokuchi, T. Kodama, H. Hagiwara, Y. Kitayama,
Tetrahedron Lett. 43 (2002) 9073–9075.