C O M M U N I C A T I O N S
Scheme 1. Proposed Mechanism of the Organocatalytic
Table 2. Variation of Aziridine Substrate
Desymmetrization of meso-Aziridines
chiral silane that is generated in situ by the reaction of the chiral
phosphoric acid with azidotrimethylsilane. Future work will include
extension of the substrate scope and theoretical and experimental
studies into the mechanism of this and related transformations.
Acknowledgment. We thank the Petroleum Research Fund for
financial support (PRF 45899-G1). We are also grateful to Ted
Gauthier (HRMS, NSF-CRIF:MU #0443611) of USF.
Supporting Information Available: Experimental procedures,
characterization, chiral HPLC conditions, and spectra. This material is
a General conditions: molar ratio of 1/2 ) 1.5:1. b Isolated yield.
c Enantioselectivity determined by HPLC analysis. d Molar ratio of 1/2 )
1:2. e Reaction performed at 60 °C.
References
(1) For a review of the synthesis and utility of chiral 1,2-diamines, see: Lucet,
D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580.
(2) For reviews, see: (a) Yudin, A. K. Aziridines and Epoxides in Organic
Synthesis; Wiley-VCH: Weinheim, 2006. (b) Masahiko, H.; Ono, K.;
Hoshimi, H.; Oguni, N. Tetrahedron 1996, 52, 7817.
(3) Li, Z.; Ferna´ndez, M.; Jacobsen, E. N. Org. Lett. 1999, 1, 1611.
(4) (a) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 2006, 128, 6312. (b) Mita, T.; Fukuda, N.; Roca, F. X.; Kanai,
M.; Shibasaki, M. Org. Lett. 2007, 9, 259. For the enantioselective
desymmetrization of meso-aziridines with TMSCN, see: Miti, T.; Fuji-
mori, I.; Wada, R.; Wen, J.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2005, 127, 11252.
(5) For reviews of enantioselective organocatalysis, see: (a) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726. (b) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (c) Taylor, M. S.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
(6) Akiyama, T.; Itoh, J.; Yokota, D.; Fuchibe, K. Angew. Chem., Int. Ed.
2004, 43, 1566.
9 and 10). Heterocyclic aziridines could also be employed in the
ring-opening reaction. The use of an aziridine derived from 2,5-
dihydrofuran resulted in a drastic decrease in yield of the product,
with the balance of mass attributed primarily to unreacted starting
material (entry 11).
Preliminary studies into the mechanism of the organocatalytic
desymmetrization of meso-aziridines indicate that the presence of
the trimethylsilyl group is required for the formation of the ring-
opened product. It has long been known that compounds containing
an amide, sulfoxide, or a PdO double bond can activate silane
compounds into donating a nucleophile.12 The reaction of the
aziridine with tetrabutylammonium azide and NaN3 in the presence
of the phosphoric acid resulted in no reaction. Notable is the fact
that the reaction does not occur with azidotrimethylsilane in the
absence of the phosphoric acid. However, the use of NaN3 in the
presence of trimethylsilyl chloride resulted in the formation of the
(7) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804.
(8) For reviews of chiral phosphoric acid catalysis ,see: (a) Akiyama, T.;
Itoh, J.; Fuchibe, K. AdV. Synth. Catal. 2006, 348, 999. (b) Connon, S. J.
Angew. Chem., Int. Ed. 2006, 45, 3909.
(9) (a) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.;
Wang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2005, 127, 15696. (b) Li, G.;
Liang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2007, 129, 5830. (c) Rowland,
G. B.; Rowland, E. B.; Liang, Y.; Antilla, J. C. Org. Lett. 2007, 9, 2609.
(d) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org.
Lett. 2005, 7, 3781. (e) Hoffmann, S.; Saeyad, A. M.; List, B. Angew.
Chem., Int. Ed. 2005, 44, 7424. (f) Storer, R. I.; Carrera, D. E.; Ni, Y.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84. (g) Rueping, M.;
Antonchick, A. P.; Thiessmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683.
(h) Rueping, M.; Antonchick, A. P.; Thiessmann, T. Angew. Chem., Int.
Ed. 2006, 45, 6751. (i) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem.
Soc. 2006, 128, 13070. (j) Rueping, M.; Azap, C. Angew. Chem., Int. Ed.
2006, 45, 7832. (k) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org.
Lett. 2005, 7, 2583. (l) Rueping, M.; Sugiono, E.; Azap, C. Angew. Chem.,
Int. Ed. 2006, 45, 2619. (m) Terada, M.; Sorimachi, K. J. Am. Chem.
Soc. 2007, 129, 292. (n) Kang, Q.; Zhao, Z. A.; You, S.-L. J. Am. Chem.
Soc. 2007, 129, 1484.
1
product in moderate yield. Preliminary H NMR studies indicate
the presence of a new compound containing proton signals
indicative of the formation of the new TMS-containing compound
6. This evidence leads us to speculate that the reaction occurs by
the mechanism shown in Scheme 1. The first step of the reaction
involves the formation of the active catalyst by displacement of
the azide. The resulting chiral silane 4 then activates the aziridine
by means of coordinating to the carbonyl functionality of the
aziridine, resulting in the formation of 5. Species 5 then undergoes
attack by the azide nucleophiles, resulting in 6 and the reformation
of PA. Compound 6 readily decomposes on silica gel to form
product 3.
(10) (a) Mayer, S.; List, B. Angew. Chem. Int. Ed. 2006, 45, 4193. (b) Martin,
N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128, 13368.
(11) Hoffman, S.; Nicoletti, M.; List, B. J. Am. Chem. Soc. 2006, 128, 13074.
(12) For an excellent review on the activation of silanes, see: Denmark, S.
E.; Heemstra, J. R.; Beutner, G. L. Angew. Chem., Int. Ed. 2005, 44, 4682.
In conclusion, we report the first organocatalytic desymmetri-
zation of meso-aziridines using chiral phosphoric acids derived from
VAPOL and VANOL. The active catalytic species appears to be a
JA0751779
9
J. AM. CHEM. SOC. VOL. 129, NO. 40, 2007 12085