UPDATES
Oxidative Coupling between Methylarenes and Ammonia
Hackenberger, D. Schwarzer, Angew. Chem. 2008, 120,
10182–10228; Angew. Chem. Int. Ed. 2008, 47, 10030–
10074.
Thus, we have developed the first direct oxidative
amidation between methylarenes and aqueous ammo-
nia using TBHP as an environmentally benign oxidant
with the synergistic catalysis of TBAI and FeCl3. Dif-
ferent methylarenes can be transformed into primary
amides in good to excellent yields. This reaction real-
izes the transformation of cheap and easily available
[3] D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Hum-
phrey, J. J. L. Leazer, R. J. Linderman, K. Lorenz, J.
Manley, B. A. Pearlman, A. Wells, A. Zaks, T. Y.
Zhang, Green Chem. 2007, 9, 411–420.
[4] a) V. R. Pattabiraman, J. W. Bode, Nature 2011, 480,
471–479; b) B. Shen, D. M. Makley, J. N. Johnston,
Nature 2010, 465, 1027–1032; c) R. Shi, L. Lu, H.
Zhang, B. Chen, Y. Sha, C. Liu, A. Lei, Angew. Chem.
2013, 125, 10776–10779; Angew. Chem. Int. Ed. 2013,
52, 10582–10585; d) W. Li, C. Liu, H. Zhang, K. Ye, G.
Zhang, W. Zhang, Z. Duan, S. You, A. Lei, Angew.
Chem. 2014, 126, 2475–2478; Angew. Chem. Int. Ed.
2014, 53, 2443–2446; e) J. Liu, Q. Liu, H. Yi, C. Qin, R.
Bai, X. Qi, Y. Lan, A. Lei, Angew. Chem. 2014, 126,
512–516; Angew. Chem. Int. Ed. 2014, 53, 502–506; f) J.
Wang, C. Liu, J. Yuan, A. Lei, Chem. Commun. 2014,
50, 4736–4739; g) J. W. Bode, R. M. Fox, K. D. Baucom,
Angew. Chem. 2006, 118, 1270–1274; Angew. Chem.
Int. Ed. 2006, 45, 1248–1252; h) W.-J. Yoo, C.-J. Li, J.
Am. Chem. Soc. 2006, 128, 13064–13065; i) C. Gunana-
than, Y. Ben-David, D. Milstein, Science 2007, 317,
790–792; j) T. Marcelli, Angew. Chem. 2006, 118, 6992–
6995; Angew. Chem. Int. Ed. 2010, 49, 6840–6843; k) J.-
F. SoulØ, H. Miyamura, S. Kobayashi, J. Am. Chem.
Soc. 2011, 133, 18550–18553; l) Z. Liu, J. Zhang, S.
Chen, E. Shi, Y. Xu, X. Wan, Angew. Chem. 2012, 124,
3285–3289; Angew. Chem. Int. Ed. 2012, 51, 3231–3235;
m) B. Tan, N. Toda, C. F. Barbas, Angew. Chem. 2012,
124, 12706–12709; Angew. Chem. Int. Ed. 2012, 51,
12538–12541; n) C. Singh, V. Kumar, U. Sharma, N.
Kumar, B. Singh, Curr. Org. Synth. 2013, 10, 241–264;
o) A. M. Dumas, G. A. Molander, J. W. Bode, Angew.
Chem. 2012, 124, 5781–5784; Angew. Chem. Int. Ed.
2012, 51, 5683–5686; p) C. Zhang, Z. Xu, L. Zhang, N.
Jiao, Angew. Chem. 2011, 123, 11284–11288; Angew.
Chem. Int. Ed. 2011, 50, 11088–11092; q) C. Zhang, N.
Jiao, J. Am. Chem. Soc. 2009, 131, 28–29; r) Y. Wang,
D. P. Zhu, L. Tang, S. J. Wang, Z. Y. Wang, Angew.
Chem. 2011, 123, 9079–9083; Angew. Chem. Int. Ed.
2011, 50, 8917–8921; s) Z. M. Zhang, O. Y. Lu, W. Q.
Wu, J. X. Li, Z. C. Zhang, H. F. Jiang, J. Org. Chem.
2014, 79, 10734–10742.
chemicals to high-value products by employing direct
C(sp ) H functionalization of aromatic hydrocarbons.
3
À
In addition, we determined that FeCl3 has a significant
effect on the TBHP/TBAI oxidation system. This
study will spur the application of TBHP/TBAI oxida-
tion systems in the future. Featured with the advan-
tages including (i) both methylarenes and aqueous
ammonia are cheap raw chemical materials; (ii)
TBHP is a “green” oxidant; (iii) TBAI and FeCl3 are
cheap, safe, and environmentally benign catalysts;
and (iv) the reaction can be conducted easily under
mild reaction conditions; this method should find po-
tentially broad applications in pharmaceutical and
other fine chemical syntheses.
Experimental Section
General Experimental Procedure for Primary Amides
Synthesis
To a mixture of TBAI (17.7 mg, 0.048 mmol, 20 mol%) and
FeCl3·6H2O (9.7 mg, 0.036 mmol, 15 mol%) were added
methylarene (4.8 mmol, 20 equiv.), aqueous ammonia
(0.24 mmol), and TBHP (70 wt% in water, 0.21 mL,
1.44 mmol, 6 equiv.). The reaction mixture was stirred at
808C inside a sealed tube for 18 h and then cooled to room
temperature, quenched with saturated Na2S2O3 solution (5
mL) and extracted with ethyl acetate (3 x 10 mL). The com-
bined organic phase was washed with brine, dried over an-
hydrous Na2SO4, filtered and evaporated under reduced
pressure to afford the crude product which was further puri-
fied by silica gel column chromatography with petroleum
ether/ethyl acetate as eluent.
[5] a) G. Arthur, The Amide Linkage: Selected Structural
Aspects in Chemistry, Biochemistry and Materials Sci-
ence, Wiley-Interscience, 2000; b) B. L. Bray, Nature
Reviews Drug Discovery 2003, 2, 587–593; c) C. L.
Allen, B. N. Atkinson, J. M. J. Williams, Angew. Chem.
2012, 124, 1412–1415; Angew. Chem. Int. Ed. 2012, 51,
1383–1386; d) T. A. Dineen, M. A. Zajac, A. G. Myers,
J. Am. Chem. Soc. 2006, 128, 16406–16409; e) M.
Zhang, S. Imm, S. Bähn, L. Neubert, H. Neumann, M.
Beller, Angew. Chem. 2012, 124, 3971–3975; Angew.
Chem. Int. Ed. 2012, 51, 3905–3909.
Acknowledgements
This work is supported by the National Natural Science
Foundation of China (21462023, 21262018) and the Natural
Science Foundation of Jiangxi Province (20143ACB20007,
20133ACB20008).
References
[6] a) T. Hirano, K. Uehara, K. Kamata, N. Mizuno, J. Am.
Chem. Soc. 2012, 134, 6425–6433; b) K. Yamaguchi, M.
Matsushita, N. Mizuno, Angew. Chem. 2004, 116, 1602–
1606; Angew. Chem. Int. Ed. 2004, 43, 1576–1580; c) M.
Tamura, H. Wakasugi, K.-I. Shimizu, A. Satsuma,
Chem. Eur. J. 2011, 17, 11428–11431; d) E. Bolyog-
[1] J. M. Humphrey, A. R. Chamberlin, Chem. Rev. 1997,
97, 2243–2266.
[2] a) E. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38,
606–631; b) C. L. Allen, J. M. J. Williams, Chem. Soc.
Rev. 2011, 40, 3405–3415; c) I. Coin, M. Beyermann, M.
Bienert, Nat. Protocols 2007, 2, 3247–3256; d) C. P. R.
Adv. Synth. Catal. 2015, 357, 2566 – 2570
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2569