E.V. Ilyakina et al. / Inorganica Chimica Acta 394 (2013) 282–288
287
4
.3 Å for 8 and 4.4 Å for 13. These values are very close to the dis-
tances between the centroids of the bands C–C of SQ chelating
rings (4.25 Å in 8 and 4.28 Å in 13).
4
. Conclusions
2 2
New bis-o-benzosemiquinonato tin(IV) complexes (3,6-SQ) SnX
(
X = Cl, Br, Ph) were synthesized by different methods such as the
substitution reaction between tin(IV) halide and alkali metal o-semi-
quinolate (1:2); the oxidative addition of o-quinone to SnX in aceto-
2
nitrile; oxidation of bis-catecholato tin(IV) with bromine. It is
important to note that, in some methods, the solvent nature plays
a crucial role: the target synthesis of tin(IV) bis-o-benzosemiquino-
2 2
lates SQ SnX proposes the use of acetonitrile instead of THF which
is common solvent in syntheses of tin(IV) catecholates.
The reaction of tin(IV) monocatecholates (3,6-Cat)SnX
2
ÁnTHF
(
2
X = Cl, Br, n = 2; X = Ph, n = 1) with NO proceeds through the for-
mation of monoradical five- or six-coordinated o-semiquinonato
species which undergo symmetrization to the corresponding
diradical complexes (3,6-SQ)
place in the case of mono-o-semiquinonato-diphenyltin(IV) com-
plexes with halides (3,6-SQ)SnPh X (X = Br, I) and lead to (3,6-
SQ) SnPh
2 2
SnX . The same transformations take
2
2
2
.
Fig. 3. Experimental X-band EPR spectrum of complex 11 (RT, toluene) and its
computer simulation (WINEPR SIMFONIA Software).
Acknowledgements
This work was made according to FSP ‘‘Scientific and Scientific-
Pedagogical Cadres of Innovation Russia’’ for 2009–2013 years (GK
P982 from 27.05.2010).We are grateful to RFBR (No. 12-03-33058
mol_a_ved), President of Russian Federation (Grants NSh-
oxygen atoms of o-benzosemiquinonato ligand, the second halogen
atom and NO -group in the basal plane. Complexes 10–12 are five-
2
coordinated and have a square-pyramidal geometry with phenyl
group in the apical position and oxygen atoms of o-semiquinonato
1
113.2012.3 and MK-614.2011.3), Russian Science Support Foun-
dation (E.V.I.) for supporting of this work.
2
ligand, other phenyl group and substituent Y (NO , Br, I) in the
basal plane. The unsymmetrical position of substituents at tin
atom relative to the plane of SQ ligand reflects in the unequiva-
lence of protons in 4th and 5th positions of SQ ligand (Table 3).
Appendix A. Supplementary material
CCDC 863613 and 863612 contain the supplementary crystallo-
graphic data for compounds 8 and 13, respectively. These data can
1
17
119
The values of
Sn and
Sn HFC constants for complexes 5–6
are typical for six-coordinated o-semiquinonato tin(IV) complexes
while for 10–12 are typical for five-coordinated o-semiquinonato
tin(IV) complexes (4–7 G for six-coordinated and 9–20 G for five-
coordinated complexes [3,1a,1b,17]).
References
Bis-o-benzosemiquinonato complexes 7, 8 and 13 are charac-
terized by EPR signals in normal and half-field (Dm = 2) at low
s
temperature in the glass solvent matrix, typical for diradical spe-
cies with S = 1 (Fig. 4). The zero-splitting parameters D and E of
complexes are the following: 268 G and 61 G for 7, 340 G and 60
G for 8, 325 G and 42 G for 13. The average distances r between
[
1] a A.I. Prokof’ev, S.I. Pombrik, Z.K. Kasymbekova, N.N. Bubnov, S.P.
Solodovnikov, D.N. Kravtsov, M.I. Kabachnik, Izv. Akad. Sci. SSSR, Ser. Chim. 3
(
1982) 540;
b A.G. Davies, J.A.-A. Hawari, J. Organomet. Chem. 251 (1983) 53;
c A.V. Piskunov, A.V. Lado, G.K. Fukin, E.V. Baranov, L.G. Abakumova, V.K.
Cherkasov, G.A. Abakumov, Heteroatom Chem. 17 (2006) 481;
d
A.V. Piskunov, A.V. Lado, E.V. Ilyakina, G.K. Fukin, E.V. Baranov, V.K.
radical centers calculated from D using the approximation of dot
Cherkasov, G.A. Abakumov, J. Organomet. Chem. 693 (2008) 128.
[2] a A.S. Batsanov, J.A.K. Howard, M.A. Brown, B.R. McGarvey, D.G. Tuck, Chem.
Commun. 7 (1997) 699;
dipoles [18] (r = (55600/2D)1/3) are the following: 4.7 Å for 7,
b A.V. Lado, A.V. Piskunov, O.V. Kuznetsova, M.I. Timoshenkov, M.S. Piskunova,
S.V. Maslennikov, Russ. J. Coord. Chem. 34 (2008) 329.
[
3] a A.V. Piskunov, A.I. Poddel’sky, Glob. J. Inorg. Chem. 2 (2011) 110;
b A.V. Lado, A.V. Piskunov, V.K. Cherkasov, G.K. Fukin, G.A. Abakumov Russ, J.
Coord. Chem. 32 (2006) 173;
c A.V. Lado, A.I. Poddel’sky, A.V. Piskunov, G.K. Fukin, E.V. Baranov, V.N.
Ikorskii, V.K. Cherkasov, G.A. Abakumov, Inorg. Chim. Acta 358 (2005) 4443;
d E.V. Ilyakina, A.I. Poddel’sky, A.V. Piskunov, N.V. Somov, Inorg. Chim. Acta 380
(
2012) 57.
[
[
[
[
4] C. Katayama, Acta Crystallogr., Sect. 42 (1986) 19.
5] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
6] G.M. Sheldrick, Acta Crystallogr., Sect. 64 (2008) 112.
7] a V.A. Garnov, V.I. Nevodchikov, L.G. Abakumova, G.A. Abakumov, V.K.
Cherkasov, Russ. Chem. Bull. 36 (1987) 1728;
b
D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory
Chemicals, Pergamon, Oxford, 1980.
[
[
8] V.A. Muraev, G.A. Abakumov, G.A. Razuvaev, Dokl. Akad. Nauk USSR 217 (1974)
1083 (in Russian).
9] A.V. Piskunov, A.V. Lado, G.A. Abakumov, V.K. Cherkasov, O.V. Kuznetsova, G.K.
Fukin, E.V. Baranov, Russ. Chem. Bull. 56 (2007) 97.
Fig. 4. The anisotropic X-band EPR spectrum of complex 13 (150 K, toluene).
Parameters D|| = 650 G, E = 42 G. The transition
D
m
s
= 2 is shown in the insertion.
[10] S.T. Zenchelsky, P.R. Segatto, J. Am. Chem. Soc. 80 (1958) 4796.