Organic Process Research & Development
Article
Travis Remarchuk, and Dr. Haiming Zhang (Genentech, Inc.)
for helpful discussions.
C.; Pizzi, D. A.; Bentley, J.; Genski, T.; Di Fabio, R.; Zonzini, L.;
Caberlotto, L. Synthesis and Structure−Activity Relationship of N-(3-
Azabicyclo[3.1.0]hex-6-ylmethyl)-5-(2-pyridinyl)-1,3-thiazol-2-amines
Derivatives as NPY Y5 Antagonists. Bioorg. Med. Chem. Lett. 2010, 20,
REFERENCES
■
4
741−4744. (c) Renslo, A. R.; Jaishankar, P.; Venkatachalam, R.;
(
1) (a) Kaur, R.; Ranjan Dwivedi, A.; Kumar, B.; Kumar, V. Recent
Developments on 1,2,4-Triazole Nucleus in Anticancer Compounds:
Hackbarth, C.; Lopez, S.; Patel, D. V.; Gordeev, M. F. Conformational
Constraint in Oxazolidinone Antibacterials. Synthesis and Structure-
Activity Studies of (Azabicyclo[3.1.0]hexylphenyl)oxazolidinones. J.
Med. Chem. 2005, 48, 5009−5024. For thermal/uncatalyzed reactions
on maleimides, see: (d) Brighty, K. E.; Castaldi, M. J. Synthesis of
A Review. Anti-Cancer Agents Med. Chem. 2016, 16, 465−489.
(
b) Singh, R.; Chouhan, A. Important Methods of Synthesis and
Biological Significance of 1,2,4-Triazole Derivatives. World J. Pharm.
Pharm. Sci. 2014, 3, 874−906. (c) Namratha, B.; Gaonkar, S. L. 1,2,4-
Triazoles: Synthetic Strategies and Pharmacological Profiles. Int. J.
Pharm. Pharm. Sci. 2014, 6 (8), 73−80. (d) Maddila, S.; Pagadala, R.;
Jonnalagadda, S. B. 1,2,4-Triazoles: A Review of Synthetic Approaches
and the Biological Activity. Lett. Org. Chem. 2013, 10, 693−714.
(1α,5α,6α)-6-Amino-3-azabicyclo[3.1.0]hexane, a Novel Achiral Dia-
mine. Synlett 1996, 1996, 1097−1099. For a review of
diastereoselectivity of the metal-catalyzed transformation, see:
(
́
e) Caballero, A.; Prieto, A.; Diaz-Requejo, M. M.; Perez, P. J.
Metal-Catalyzed Olefin Cyclopropanation with Ethyl Diazoacetate:
(
e) Kharb, R.; Sharma, P. C.; Yar, M. S. Pharmacological Significance
Control of the Diastereoselectivity. Eur. J. Inorg. Chem. 2009, 2009,
of Triazole Scaffold. J. Enzyme Inhib. Med. Chem. 2011, 26, 1−21 and
references therein.
1
(
137−1144.
7) (a) Oikawa, M.; Sasaki, S.; Sakai, M.; Ishikawa, Y.; Sakai, R. Total
Synthesis of (±)-Dysibetaine CPa and Analogs. Eur. J. Org. Chem.
012, 2012, 5789−5802. (b) Reference 6b. (c) Agrawal, K. C.;
(
2) For reviews of 1,2,4-triazole synthesis, see: (a) Zhang, H.; Damu,
G. L. V.; Cai, G.; Zhou, C. Current Developments in the Syntheses of
,2,4-Triazole Compounds. Curr. Org. Chem. 2014, 18, 359−406.
b) Holm, S. C.; Straub, B. F. Synthesis of N-Substituted 1,2,4-
Triazoles. A Review. Org. Prep. Proced. Int. 2011, 43, 319−347.
c) Moulin, A.; Bibian, M.; Blayo, A.; El Habnouni, S.; Martinez, J.;
Fehrentz, J. Synthesis of 3,4,5-Trisubstituted-1,2,4-triazoles. Chem. Rev.
010, 110, 1809−1827. (d) Potts, K. T. The Chemistry of 1,2,4-
2
1
(
Srivastava, S.; Singh, V. S.; Dikshit, D. K.; Bose, P.; Sharma, P.; Kumar,
N. A New Method for the Synthesis of Ethyl (1α,5α,6α)-3-Benzyl-3-
azabicyclo[3.1.0]hexane-2,4-dione-6-carboxylate: An Intermediate for
the Trovafloxacin Side Chain. Indian J. Chem. 2004, 43B, 873−875.
(
(d) Buono, F. G.; Eriksson, M. C.; Yang, B.; Kapadia, S. R.; Lee, H.;
2
Brazzillo, J.; Lorenz, J. C.; Nummy, L.; Busacca, C. A.; Yee, N.;
Senanayake, C. Development of Multikilogram Continuous Flow
Cyclopropanation of N-Benzylmaleimide through Kinetic Analysis.
Org. Process Res. Dev. 2014, 18, 1527−1534.
Triazoles. Chem. Rev. 1961, 61, 87−127. For the complementary
synthesis of 1-substituted 1,2,4-triazoles, see: (e) Balasubramanian, M.;
Keay, J. G.; Scriven, E. F. V.; Shobana, N. Approaches to the Synthesis
of 1-Substituted 1,2,4-Triazoles. Heterocycles 1994, 37, 1951−1975.
(8) (a) Fritz, S. P.; Matlock, J. V.; McGarrigle, E. M.; Aggarwal, V. K.
(
3) (a) Vempati, R. K.; Reddy, N. S.; Alapati, S. R.; Dubey, P. K.
Efficient Synthesis of Cyclopropane-Fused Heterocycles with
Synthesis of Azabicyclo[3.1.0]amine Analogues of Anacardic Acid as
Bromoethylsulfonium Salt. Chem. - Eur. J. 2013, 19, 10827−10831.
Potent Antibacterial Agents. Asian J. Chem. 2013, 25, 986−994.
(b) Riches, S. L.; Saha, C.; Filgueira, N. F.; Grange, E.; McGarrigle, E.
(
b) Moffat, D.; Patel, S.; Day, F.; Belfield, A.; Donald, A.; Rowlands,
M.; Aggarwal, V. K. On the Mechanism of Ylide-Mediated
Cyclopropanations: Evidence for a Proton-Transfer Step and Its
Effect on Stereoselectivity. J. Am. Chem. Soc. 2010, 132, 7626−7630.
M.; Wibawa, J.; Brotherton, D.; Stimson, L.; Clark, V.; Owen, J.;
Bawden, L.; Box, G.; Bone, E.; Mortenson, P.; Hardcastle, A.; van
Meurs, S.; Eccles, S.; Raynaud, F.; Aherne, W. Discovery of 2-(6-{[(6-
Fluoroquinolin-2-yl)methyl]amino}bicyclo[3.1.0]hex-3-yl)-N-hydrox-
ypyrimidine-5-carboxamide (CHR-3996), a Class I Selective Orally
Active Histone Deacetylase Inhibitor. J. Med. Chem. 2010, 53, 8663−
(9) For selected examples of large-scale Curtius rearrangements, see:
(a) Marsini, M. A.; Buono, F. G.; Lorenz, J. C.; Yang, B.; Reeves, J. T.;
Sidhu, K.; Sarvestani, M.; Tan, Z.; Zhang, Y.; Li, N.; Lee, H.; Brazzillo,
J.; Nummy, L. J.; Chung, J. C.; Luvaga, I. K.; Narayanan, B. A.; Wei, X.;
Song, J. J.; Roschangar, F.; Yee, N. K.; Senanayake, C. H. Development
of a Concise, Scalable Synthesis of a CCR1 Antagonist Utilizing a
Continuous Flow Curtius Rearrangement. Green Chem. 2017, 19,
8678. (c) Madhusudhan, G.; Balraju, V.; Rajesh, T.; Narayana, B. V.;
Reddy, R. N. Synthesis of an Amino Moiety in Trovafloxacin by Using
an Inexpensive Amidine Base, N,N-Diethylacetamidine. Indian J. Chem.
2
009, 48B, 569−573. (d) Sun, Q.; Zhu, R.; Foss, F. W.; Macdonald, T.
1
454−1461. (b) Filipponi, P.; Ostacolo, C.; Novellino, E.; Pellicciari,
L. Mechanisms of Trovafloxacin Hepatotoxicity: Studies of a Model
R.; Gioiello, A. Continuous Flow Synthesis of Thieno[2,3-c]-
isoquinolin-5(4H)-one Scaffold: A Valuable Source of PARP-1
Inhibitors. Org. Process Res. Dev. 2014, 18, 1345−1353. (c) Steven,
A.; Hopes, P. Use of a Curtius Rearrangement as Part of the
Multikilogram Manufacture of a Pyrazine Building Block. Org. Process
Res. Dev. 2018, 22, 77−81. For Hofmann rearrangements, see:
Cyclopropylamine-containing System. Bioorg. Med. Chem. Lett. 2007,
17, 6682−6686. (e) Ballini, R.; Fiorini, D.; Palmieri, A. A General
Procedure for the One-pot Preparation of Polyfunctionalized Nitro-
cyclopropanes. Synlett 2003, 1704−1706. (f) Norris, T.; Braish, T. F.;
Butters, M.; DeVries, K. M.; Hawkins, J. M.; Massett, S. S.; Rose, P. R.;
Santafianos, D.; Sklavounos, C. Synthesis of Trovafloxacin using
Various (1α,5α,6α)-3-Azabicyclo[3.1.0]hexane Derivatives. J. Chem.
Soc., Perkin Trans. 1 2000, 1615−1622. (g) Braish, T. F.; Castaldi, M.;
Chan, S.; Fox, D. E.; Keltonic, T.; McGarry, J.; Hawkins, J. M.; Norris,
T.; Rose, P. R.; Sieser, J. E.; Sitter, B. J.; Watson, H. Construction of
the (1α,5α,6α)-6-Amino-3-azabicyclo[3.1.0]hexane Ring System.
Synlett 1996, 1996, 1100−1102.
(d) Abrecht, S.; Adam, J.-M.; Bromberger, U.; Diodone, R.; Fettes, A.;
Fischer, R.; Goeckel, V.; Hildbrand, S.; Moine, G.; Weber, M. An
Efficient Process for the Manufacture of Carmegliptin. Org. Process Res.
Dev. 2011, 15, 503−514. (e) Palmieri, A.; Ley, S. V.; Hammond, K.;
Polyzos, A.; Baxendale, I. R. A Microfluidic Flow Chemistry Platform
for Organic Synthesis: The Hofmann Rearrangement. Tetrahedron
Lett. 2009, 50, 3287−3289.
(10) Caution should always be used when working with densely
functionalized, nitrogen-rich molecules. Before starting development
work on larger scales, we collected differential scanning calorimetry
(DSC) data for synthetic intermediates of interest and, where
applicable, applied a safety margin of at least 100 °C between planned
operating temperatures and the onset of exothermic events observed
via DSC.
(
4) (a) de Meijere, A.; Kozhushkov, S. I.; Savchenko, A. I. Titanium-
Mediated Syntheses of Cyclopropylamines. J. Organomet. Chem. 2004,
6
89, 2033−2055. (b) Kulinkovich, O. G.; de Meijere, A. 1,n-
Dicarbanionic Titanium Intermediates from Monocarbanionic Orga-
nometallics and Their Application in Organic Synthesis. Chem. Rev.
2
(
000, 100, 2789−2834.
5) Krow, G. R.; Cannon, K. C. Synthesis of 3-Azabicyclo[3.1.0]-
hexanes. A Review. Org. Prep. Proced. Int. 2000, 32, 103−122.
6) For examples from pyrrolines using Rh, see: (a) Kim, J. H.; Nam,
(
(11) For applications to pyrroline scaffolds and seminal reports, see:
(a) Brackmann, F.; Colombo, N.; Cabrele, C.; de Meijere, A. An
Improved Synthesis of 3,4-(Aminomethano)proline and Its Incorpo-
ration into Small Oligopeptides. Eur. J. Org. Chem. 2006, 2006, 4440−
4450. (b) Brackmann, F.; Schill, H.; de Meijere, A. An Access to 3,4-
G. Synthesis and Evaluation of 6-Pyrazoylamido-3N-substituted
Azabicyclo[3,1,0]hexane Derivatives as T-type Calcium Channel
Inhibitors for Treatment of Neuropathic Pain. Bioorg. Med. Chem.
2
016, 24, 5028−5035. (b) Biagetti, M.; Leslie, C. P.; Mazzali, A.; Seri,
G
Org. Process Res. Dev. XXXX, XXX, XXX−XXX