Gao et al.
COMMUNICATION
structure has been confirmed by both experimental ob-
servation and theoretical simulation. It has been demon-
strated that this microporous crystalline COF material
2
could act as a scaffold for selective CO capture. It is
expected that the present approach will boost the re-
search on employing nitrogen-rich COF materials for
gas adsorption and separation.
Acknowledgement
This research is supported by the National Research
Foundation (NRF), Prime Minister’s Office, Singapore
under its NRF Fellowship (NRF2009NRF-RF001-015)
and Campus for Research Excellence and Technological
Enterprise (CREATE) Programme-Singapore Peking
University Research Centre for
a
Sustainable
Low-Carbon Future, and the NTU-A*Star Centre of
Excellence for Silicon Technologies (A*Star SERC No.:
Figure 3 Nitrogen adsorption (open symbols) and desorption
1
12 351 0003).
(filled symbols) isotherms of N-COF measured at 77 K. Inset:
half pore-size distribution of N-COF.
References
The successful synthesis of nitrogen-rich COF
[
1] (a) Zade, S. S.; Bendikov, M. Angew. Chem., Int. Ed. 2010, 49, 4012; (b)
Jiang, D. E.; Dai, S. J. Phys. Chem. A 2008, 112, 332; (c) Anthony, J. E.
Angew. Chem., Int. Ed. 2008, 47, 452; (d) Anthony, J. E. Chem. Rev.
2006, 106, 5028; (e) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem.
Rev. 2004, 104, 4891; (f) Bendikov, M. H.; Duong, M.; Starkey, K.;
Houk, K. N.; Carter, E. A.; Wudl, F. J. Am. Chem. Soc. 2004, 126, 10493;
(g) Houk, K. N.; Lee, P. S.; Nendel, M. J. Org. Chem. 2001, 66, 5517.
2] (a) Bendikov, M.; Duong, H. M.; Starkey, K.; Houk, K. N.; Carter, E. A.;
Wudl, F. J. Am. Chem. Soc. 2004, 126, 7416; (b) Brunner, K.; van Dijken,
A.; Borner, H.; Bastiaansen, J.; Kiggen, N. M. M.; Langeveld, B. M. W. J.
Am. Chem. Soc. 2004, 126, 6035; (c) Kim, S. J.; Zhang, Y. D.; Zuniga, C.;
Barlow, S.; Marder, S. R.; Kippelen, B. Org. Electron 2011, 12, 492; (d)
van Dijken, A.; Bastiaansen, J.; Kiggen, N. M. M.; Langeveld, B. M. W.;
Rothe, C.; Monkman, A.; Bach, I.; Stossel, P.; Brunner, K. J. Am. Chem.
Soc. 2004, 126, 7718.
(
N-COF) inspired us to investigate its uptake capacity
and selectivity toward CO . As shown in Figure 4, the
adsorption isotherm reveals that the CO uptake capa-
2
2
3
1
bility of N-COF is as high as 61.2 cm •g (1 atm, 273
3
1
4
K) and 32.4 cm •g (1 atm, 298 K), while its CH up-
3
1
take capability is 34.4 (1 atm, 273 K) and 11.4 cm •g
1 atm, 298 K). Since the gas selectivity is considered as
an important factor in the CO capture, a comparison
with the N uptake at 1 atm and 273 K was conducted to
determine the CO uptake selectivity. The N uptake
[
(
2
2
2
2
3
1
capability of N-COF is only 3.6 cm •g (Figures S8 and
S9 in the SI), which indicates its high adsorption selec-
2 2
tivity toward CO over N under the same conditions.
[
[
3] (a) Rackley, S. Carbon Capture and Storage, Elsevier, 2009; (b) Carbon
Capture: Sequestration and Storage, Eds.: Hester, R. E.; Harrison, R. M.,
Royal Society of Chemistry, Cambridge, 2010; (c) Wilson, E. J.; Gerard,
D. Carbon Capture and Sequestration: Integrating Technology, Moni-
toring, Regulation, Wiley-VCH, Weinheim, 2007; (d) Gao, F.; Zhang, J.
B.; Li, C. P.; Huo, T. R.; Wei, X. H. Chin. Chem. Lett. 2013, 24, 249.
4] (a) Song, C.; Gaffney, A. F.; Fujimoto, K. CO
tion, American Chemical Society, Washington, DC, 2002; (b) Hu, Y. H.
Advances in CO Conversion and Utilization, American Chemical Soci-
2
Conversion and Utiliza-
2
ety, Washington, DC, 2011; (c) Liu, H. X.; Man, R. L.; Zheng, B. S.;
Wang, Z. X.; Yi, P. G. Chin. J. Chem. Phys. 2014, 27, 144; (d) An, M. I.;
Zhang, X.; Yang, T.; Chen, M.; Wang, J. Chin. J. Chem. 2012, 30, 2225.
5] (a) Cullis, A. G.; Canham, L. T.; Calcott, P. D. J. J. Appl. Phys. 1997, 82,
[
[
9
09; (b) Parkhutik, V. J. Porous Mater. 2000, 7, 363; (c) Thomas, A. An-
gew. Chem., Int. Ed. 2010, 49, 8328; (d) Zhao, H. M.; Lin, D.; Yang, G.;
Chun, Y.; Xu, Q. H. Acta Phys-Chim. Sin. 2012, 28, 985.
6] (a) Sakintuna, B.; Yurum, Y. Ind. Eng. Chem. Res. 2005, 44, 2893; (b)
Lee, J.; Kim, J. Adv. Mater. 2006, 18, 2073; (c) Zhu, X. L.; Wang, P. Y.;
Peng, C.; Yang, J.; Yan, X. B. Chin. Chem. Lett. 2014, 25, 929; (d) Ma, Y.
H.; Zhao, H. L.; Tang, S. J.; Hu, J.; Liu, H. L. Acta Phys.-Chim. Sin. 2011,
2 4 2
Figure 4 CO , CH and N capture capabilities of N-COF at 1
atm, 273 K and 298 K.
2
7, 689.
Conclusions
[
7] (a) Bae, Y. S.; Snurr, R. Q. Angew. Chem., Int. Ed. 2011, 50, 11586; (b)
Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Bal-
buen, P. B.; Zhou, H. C. Coord. Chem. Rev. 2011, 255, 1791; (c) Sumida,
K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z.
R.; Bae, T. H.; Long, J. R. Chem. Rev. 2012, 112, 724; (d) Liu, J.; Thal-
In conclusion, we have successfully constructed an
imine-based nitrogen-rich COF material by the conden-
sation of triangular aldehyde and amine. The framework
4
www.cjc.wiley-vch.de
© 2014 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2014, XX, 1—5