1542
Can. J. Chem. Vol. 83, 2005
14. W.v.E. Doering and A.K. Hoffmann. J. Am. Chem. Soc. 77,
521 (1955).
15. R.K. Bansal, N. Gupta, S. Singh, K. Karaghiosoff, P. Mayer,
and M. Vogt. Tetrahedron Lett. 45, 7771 (2004).
16. J.F. King, R. Rathore, Z. Guo, M. Li, and N. Payne. J. Am.
Chem. Soc. 122, 10 308 (2000).
It is interesting that no large intrinsic barrier to proton
transfer arises from the requirement for the movement of
negative charge from nitrogen to carbon on moving to the
transition state for protonation of α-cyano carbanions (4, 12,
46, 47). As discussed earlier (4), the proton transfer to α-
cyano carbanions resembles proton transfer to acetate anion
(48) in that the requirement for localization of negative
charge at the reacting basic atom (carbon or oxygen) pro-
ceeding to the transition state does not result in a large in-
trinsic barrier for proton transfer.
17. D.A. Dixon, T.H. Dunning, R.A. Eades, and P.G. Gassman. J.
Am. Chem. Soc. 105, 7011 (1983).
18. C.F. Bernasconi and F. Terrier. J. Am. Chem. Soc. 109, 7115
(1987).
19. C.J. Murray and W.P. Jencks. J. Am. Chem. Soc. 110, 7561
(1988).
20. C.J. Murray and W.P. Jencks. J. Am. Chem. Soc. 112, 1880
(1990).
21. N.H. Werstiuk and S. Banerjee. J. Org. Chem. 46, 470 (1981).
22. G. Barbarella, A. Garbesi, and A. Fava. Helv. Chim. Acta, 54,
253 (1971).
23. V. Cere, C. Paolucci, S. Pollicino, E. Sandri, and A. Fava. Tet-
rahedron Lett. 24, 839 (1983).
The α-fluorenyl group at the dimethyl-9-fluorenylsulfonium
ion (1, pKa = 13.7 in water–DMSO (95:5) (20)) causes a 16-
unit decrease in the statistically corrected pKa of 29.5 for a
single proton of Me3S+, while the α-fluorenyl group at 9-
cyanofluorene (2, pKa = 10.7 in water–DMSO (90:10) (18))
causes a larger 19-unit decrease in the statistically corrected
pKa of 29.4 for a single proton of acetonitrile. This shows
that the addition of an α-fluorenyl group results in a larger
+
attenuation of the α-SMe2 than of the α-CN substituent ef-
24. J.-P. Cheng, B. Liu, Y. Zhao, Y. Sun, X.-M. Zhang, and Y. Lu.
J. Org. Chem. 64, 604 (1999).
fect on carbon acidity. We suggest that this reflects the par-
ticularly sharp falloff (1/r4) in the stabilization of negative
charge by polarization onto a atom with increasing radius of
separation of the interacting centers (45).
25. O. Hofer and E.L. Eliel. J. Am. Chem. Soc. 95, 8045 (1973).
26. O.T. Magnusson and P.A. Frey. Bioorg. Chem. 30, 53 (2002).
27. X.-M. Zhang and F.C. Bordwell. J. Am. Chem. Soc. 116, 968
(1994).
28. A.-P. Bettencourt, A.M. Freitas, M.I. Montenegro, M.F. Niel-
sen, and J.H.P. Utley. J. Chem. Soc. Perkin Trans. 2, 515
(1998).
Acknowledgement
29. P.K. Glasoe and F.A. Long. J. Phys. Chem. 64, 188 (1960).
30. A.K. Covington, R.A. Robinson, and R.G. Bates. J. Phys.
Chem. 70, 3820 (1966).
We acknowledge the National Institutes of Health (GM
39754) for generous support of this work.
31. C.J. Halkides, P.A. Frey, and J.B. Tobin. J. Am. Chem. Soc.
115, 3332 (1993).
32. R.W. Nagorski and J.P. Richard. J. Am. Chem. Soc. 118, 7432
(1996).
33. J.P. Richard and R.W. Nagorski. J. Am. Chem. Soc. 121, 4763
(1999).
34. J.C. Fishbein and W.P. Jencks. J. Am. Chem. Soc. 110, 5087
(1988).
References
1. T.L. Amyes and J.P. Richard. J. Am. Chem. Soc. 114, 10297
(1992).
2. T.L. Amyes and J.P. Richard. J. Am. Chem. Soc. 118, 3129
(1996).
3. R.W. Nagorski, T. Mizerski, and J.P. Richard. J. Am. Chem.
Soc. 117, 4718 (1995).
4. J.P. Richard, G. Williams, and J. Gao. J. Am. Chem. Soc. 121,
715 (1999).
5. A. Rios and J.P. Richard. J. Am. Chem. Soc. 119, 8375 (1997).
6. A. Rios, T.L. Amyes, and J.P. Richard. J. Am. Chem. Soc.
122, 9373 (2000).
35. J.P. Richard. J. Am. Chem. Soc. 106, 4926 (1984).
36. R.A. Marcus. J. Phys. Chem. 72, 891 (1968).
37. A.J. Kresge. Chem. Soc. Rev. 2, 475 (1973).
38. A.J. Kresge, R.A. More O’Ferrall, and M.F. Powell. In Iso-
topes in organic chemistry. Vol. 7. Edited by E. Buncel and
C.C. Lee. Elsevier, New York. 1987.
7. Y. Chiang, A.G. Griesbeck, H. Heckroth, B. Hellrung, A.J.
Kresge, Q. Meng, A.C. O’Donoghue, J.P. Richard, and J.
Wirz. J. Am. Chem. Soc. 123, 8979 (2001).
8. A. Rios, J. Crugeiras, T.L. Amyes, and J.P. Richard. J. Am.
Chem. Soc. 123, 7949 (2001).
39. K. Giese, U. Kaatze, and R. Pottel. J. Phys. Chem. 74, 3718
(1970).
40. U. Kaatze. J. Chem. Eng. Data, 34, 371 (1989).
41. U. Kaatze, R. Pottel, and A. Schumacher. J. Phys. Chem. 96,
6017 (1992).
9. A. Rios, J.P. Richard, and T.L. Amyes. J. Am. Chem. Soc.
42. F.G. Bordwell. Acc. Chem. Res. 21, 456 (1988).
43. K.B. Wiberg and H. Castejon. J. Org. Chem. 60, 6327 (1995).
44. M.R.F. Siggel, A. Streitwieser, and T.D. Thomas. J. Am.
Chem. Soc. 110, 8022 (1988).
124, 8251 (2002).
10. J.P. Richard, G. Williams, A.C. O’Donoghue, and T.L. Amyes.
J. Am. Chem. Soc. 124, 2957 (2002).
11. T.L. Amyes, S.T. Diver, J.P. Richard, F.M. Rivas, and K. Toth.
45. J. Hine. Structural effects on equilibria in organic chemistry.
J. Am. Chem. Soc. 126, 4366 (2004).
Wiley, New York. 1975.
12. J.P. Richard, T.L. Amyes, and M.M. Toteva. Acc. Chem. Res.
34, 981 (2001).
13. A. Streitwieser, M.R. Granger, F. Mares, and R.A. Wolf. J.
46. C.F. Bernasconi. Acc. Chem. Res. 20, 301 (1987).
47. F. Hibbert, F.A. Long, and E.A. Walters. J. Am. Chem. Soc.
93, 2829 (1971).
Am. Chem. Soc. 95, 4257 (1973).
48. M. Eigen. Angew. Chem. Int. Ed. Engl. 3, 1 (1964).
© 2005 NRC Canada