Shaw et al.
F IGURE 1. Structures i and e are the internally (nonpolar
solvents) and externally (polar solvents) protonated tautomers
of N-confused porphyrin; freebase porphyrin (H
shown for comparison.
2
P, right) is
F IGURE 2. Structures of the N-confused porphyrins exam-
ined in this paper. Only the externally protonated form of each
tautomer is shown.
compared to H
that compare favorably to chlorins
Both tautomeric forms have absorption spectra that are
TPP,10 as well as photophysical properties
2
1
1,12
13
and porphyrins.
the para-position or 3,5-positions of the meso phenyl rings
2
different from that of tetraphenylporphyrin (H TPP) and
(Figure 2). The role of the substituent on purification and
are characterized by red-shifted Soret and Q-bands.1
4,15
final synthetic yield will be discussed. We have also
probed the effects of the substituent in both tautomers
of the macrocycle on properties such as absorption and
fluorescence and compared the results to unsubstituted
The red-shifted absorption maxima are attributed to a
break in the degeneracy of the e orbitals that results
g
from a decrease in symmetry within the macrocycle.1
The excited state properties of each tautomer are differ-
ent from one another, with the internally protonated
tautomer exhibiting a lower excited state energy and
fluorescence quantum yield than the externally pro-
5
H
2
NCTPP.
Resu lts a n d Discu ssion
1
5,16
tonated tautomer.
The fluorescence lifetimes of both
tautomers are comparable.15 These properties indicate
that N-confused porphyrins are viable alternatives to
Syn th esis. While the synthesis of H NCTPP is known
2
to be acid catalyzed,22 the mechanism of the reaction has
porphyrins and the difficult to prepare chlorins1
7,18
yet to be fully elucidated. Possible mechanisms in the
literature include anion templating23 and the presence
of multiple orientations of tetrapyrromethane link-
ages that allow for ring closure by electrophilic attack at
either the R- or â-pyrrole positions.24 Typical yields
in
artificial light-harvesting systems and photonic arrays.1
9-21
In this paper, we report the synthesis of a series of
seven H NCTPPs, where both electron-donating and
electron-withdrawing groups have been substituted at
2
(
2
isolated) for the synthesis of unsubstituted H NCTPP
2
5
using Lindsey conditions are around 35%. For the seven
compounds synthesized here, isolated yields ranged from
(
10) (a) Parusel, A. B. J .; Ghosh, A. J . Phys. Chem. A 2000, 104,
2
504-2507. (b) Ghosh, A.; Wondimagegn, T.; Nilsen, H. J . J . Phys.
Chem. B 1998, 102, 10459-10467. (c) Szterenberg, L.; Latos-Grazy n˜ ski,
6
.7% (3) to 26% (5), with the average yield being around
L. Inorg. Chem. 1997, 36, 6287-6291.
(
11) (a) Dorough, G. D.; Shen, K. T. J . Am. Chem. Soc. 1950, 72,
3
1
939-3944. (b) Dorough, G. D.; Huennekens, F. M. J . Am. Chem. Soc.
(19) (a) Kirmaier, C.; Hindin, E.; Schwartz, J . K.; Sazanovich, I. V.;
952, 74, 3974-3976.
Diers, J . R.; Muthukumaran, K.; Taniguchi, M.; Bocian, D. F.; Lindsey,
J . S.; Holten, D. J . Phys. Chem. B 2003, 107, 3443-3454. (b)
Muthukumaran, K.; Loewe, R. S.; Kirmaier, C.; Hindin, E.; Schwartz,
J . K.; Sazanovich, I. V.; Diers, J . R.; Bocian, D. F.; Holten, D.; Lindsey,
J . S. J . Phys. Chem. B 2003, 107, 3431-3442. (c) Loewe, R. S.;
Tomizaki, K.; Chevalier, F.; Lindsey, J . S. J . Porph. Phthalo. 2002, 6,
626-642. (d) Lammi, R. K.; Ambroise, A.; Balasubramian, T.; Wagner,
R. W.; Bocian, D. F.; Holten, D.; Lindsey, J . S. J . Am. Chem. Soc. 2000,
122, 7579-7591. (e) Rao, P. D.; Dhanalekshmi, S.; Littler, B. J .;
Lindsey, J . S. J . Org. Chem. 2000, 65, 7323-7344. (f) Li, J .; Ambroise,
A.; Yang, S. I.; Diers, J . R.; Seth, J .; Wack, C. R.; Bocian, D. F.; Holten,
D.; Lindsey, J . S. J . Am. Chem. Soc. 1999, 121, 8927-8940.
(20) (a) Andersson, M.; Sinks, L. E.; Hayes, R. T.; Zhao, Y.;
Wasielewski, M. R. Angew. Chem., Int. Ed. 2003, 42, 3139-3143. (b)
Sinks, L. E.; Wasielewski, M. R. J . Phys. Chem. A 2003, 107, 611-
620. (c) Miller, S. E.; Lukas, A. S.; Marsh, E.; Bushard, P.; Wasielewski,
M. R. J . Am. Chem. Soc. 2000, 122, 7802-7810. (d) Hayes, R. T.;
Wasielewski, M. R.; Gosztola, D. J . Am. Chem. Soc. 2000, 122, 5563-
5567. (e) Ostrowski, J . C.; Susumu, K.; Robinson, M. R.; Therien, M.
J .; Bazan, G. C. Adv. Mater. 2003, 15, 1296-1300.
(21) (a) de la Garza, L.; J eong, G.; Liddell, P. A.; Sotomura, T.;
Moore, T. A.; Moore, A. L.; Gust, D. J . Phys. Chem. B 2003, 107,
10252-10260. (b) Bennett, I. M.; Farfano, H. M. V.; Bogani, F.; Primak,
A.; Liddell, P. A.; Otero, L.; Sereno, L.; Silber, J . J .; Moore, A. L.; Moore,
T. A.; Gust, D. Nature 2002, 420, 398-401. (c) Redmore, N. P.; Rubtsov,
I. V.; Therien, M. J . J . Am. Chem. Soc. 2003, 125, 8769-8778.
(22) Geier, G. R., III; Ciringh, Y.; Li, F.; Haynes, D. M.; Lindsey, J .
S. Org. Lett. 2000, 2, 1745-1748.
(12) Weiss, C. In The Porphyrins; Dolphin, D., Ed.; Academic
Press: New York, 1978; Vol. III, pp 211-223.
(13) Gouterman, M. J . In The Porphyrins; Dolphin, D., Ed.; Aca-
demic Press: New York, 1978; Vol. III, pp 1-165. Seybold, P. G.;
Gouterman, M. J . Mol. Spectrosc. 1969, 31, 1-13.
(14) (a) Furuta, H.; Ishizuka, T.; Osuka, A.; Dejima, H.; Nakagawa,
H.; Ishikawa, Y. J . Am. Chem. Soc. 2001, 123, 6207-6208. (b) Furuta,
H.; Asano, T.; Ogawa, T. J . Am. Chem. Soc. 1994, 116, 767-8.
(15) Belair, J . P.; Ziegler, C. S.; Rajesh, C. S.; Modarelli, D. A. J .
Phys. Chem. A 2002, 106, 6445-6451.
16) Wolff, S. A.; Alem a´ n, E. A.; Banerjee, D.; Rinaldi, P. L.;
Modarelli, D. A. J . Org. Chem. 2004, 69, 4571-4576.
17) Strachan, J .-P.; O’Shea, D. F.; Balasubramanian, T.; Lindsey,
J . S. J . Org. Chem. 2000, 65, 3160-3172.
18) (a) Pandey, R. K.; Zheng, G. In The Porphyrin Handbook;
(
(
(
Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San
Diego, CA, 2000; Vol. 6, pp 157-230. (b) Vicente, M. G. H. In The
Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.;
Academic Press: San Diego, CA, 2000; Vol. 1, pp 149-199. (c)
J aquinod, L. In The Porphyrin Handbook; Kadish, K. M., Smith, K.
M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 1,
pp 201-237. (d) Montforts, F.-P.; Glasenapp-Breiling, M. Prog. Hetero-
cycl. Chem. 1998, 10, 1-24. (e) Flitsch, W. Adv. Heterocycl. Chem. 1988,
4
1
3, 73-126. (f) Montforts, F.-P.; Gerlach, B.; H o¨ per, F. Chem. Rev.
994, 94, 327-347. (g) Smith, K. M. In Chlorophylls; Scheer, H., Ed.;
CRC Press: Boca Raton, FL, 1991; pp 115-143. (h) Hynninen, P. H.
In Chlorophylls; Scheer, H., Ed.; CRC Press: Boca Raton, FL, 1991;
pp 145-209. (i) Scheer, H. In The Porphyrins; Dolphin, D., Ed.;
Academic Press: New York, 1978; Vol. II, pp 1-44. (j) Scheer, H.;
Inhoffen, H. H. In The Porphyrins; Dolphin, D., Ed.; Academic Press:
New York, 1978; Vol. II, pp 45-90. (k) Lwowski, W. In The Chloro-
phylls; Vernon, L. P., Seely, G. R., Eds.; Academic Press: New York,
(23) Furuta, H.; Asano, T.; Ogawa, T. J . Am. Chem. Soc. 1994, 116,
767-768.
(24) Chmielewski, P. J .; Latos-Grazynski, L.; Rachlewicz, K.;
Glowiak, T. Angew. Chem., Int. Ed. Engl. 1994, 33, 779-780.
(25) Geier, G. R., III; Haynes, D. M.; Lindsey, J . S. Org. Lett. 1999,
1, 1455-1458.
1
966; pp 119-143.
7
424 J . Org. Chem., Vol. 69, No. 22, 2004