1
98
XU ET AL.
CONCLUSIONS
15. Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato,
F.; Marzano, C. Chem Rev 2014, 114, 815–862.
16. Reddy, P. A. N.; Nethaji, M.; Chakravarty, A. R. Eur J
Inorg Chem2004, 1440–1446.
17. Thalamuthu, S.; Annaraj, B.; Neelakantan, M. A. Spec-
trochimca Acta, Part A 2014, 118, 120–129.
In summary, two dinuclear copper(II) complexes with
N-salicylidene glycine Schiff base efficiently acceler-
ated the PNPP hydrolysis. Cu2L 2 containing the 5 -
ꢀ
2
chloride group possesses much higher activity than its
ꢀ
1
8. Lu, L. P.; Yue, J. J.; Yuan, C. X.; Zhu, M. L.; Han, H.;
Liu, Z. W.; Guo, M. L. J Inorg Biochem 2011, 105,
analogue without 5 -chloride, denoting a 1.3–3.6 folds
kinetic advantage over the whole concentration range
of PNPP. Also, the pH-dependent catalytic constant
1
323–1328.
1
2
2
9. Jiang, W. D.; Xu, B.; Liu, F. A.; Wang, Y.; Xiang, Z.
Syn React Inorg M 2015. 45, 34–39.
0. Sigman, D. S.; Jorgensen, C. T. J Am Chem Soc 1972,
(kcat) gave two pKa1 value closed to 7.5, which im-
plies the divalent copper ions have a strong ability to
reduce the pKa1 of the Cu(II)-bound H2O. Hence, we
are permitted to predict that much better activity of
dinuclear metal complexes containing highly stronger
electron-withdrawing substituents (e.g., nitro, triflu-
omethyl group) will be achieved for the hydrolysis of
various esters. Moreover, metal complexes with amino
acid Schiff bases likely become a class of potential ar-
tificial enzymes that will help not only the theoretical
researches but also in the development of physiolog-
ically active antimicrobial, antifungal, and anticancer
agents.
9
4, 1724–1730.
1. Gao, C. Y.; Feng, L.; Lu, J.; Wang, Z. G.; Tian, J. L.;
Gu, W.; Yan, S. P. Acta Sci Nat Univ Nankai 2011, 44,
1
–9.
2
2. Phillipson, P. E. Biophys Chem 1982, 16, 173–179.
23. Cao, J. S. J Phys Chem B 2011, 115, 5493–5498.
24. Iley, J.; Moreira, R.; Calheiros, T.; Mendes, E. Pharm
Res 1997, 1 4, 1634–1639.
25. Bertini, I.; Luchinat, C. In Bioinorganic Chemistry;
Bertini, I.; Gray, H. B.; Lippard, S. J.; Valentine, J. S.,
eds.; CA University Science Books, Mill Valley, 1994;
Ch. 2.
2
6. Schmitt, W.; Anson, C. E.; Sessoli, R.; Van, M. V.;
Powell, A. K. J Inorg Biochem 2002, 91, 173–189.
7. Wang, Y.; Xiao, W.; Mao, J. W.; Zhou, H.; Pan, Z. Q. J
Mol Struct 2013, 1036, 361–371.
BIBLIOGRAPHY
2
1
. Kushwah, N.; Pal, M. K.; Wadawale, A.; Sudarsan, V.;
Manna, D.; Ghanty, T. K.; Jain, V. K. Organometallics
28. Iranzo, O.; Kovalevsky, A. Y.; Morrow, J. R.; Richard,
J. P. J Am Chem Soc 2003, 125, 1988–1993.
29. Rawlings, J.; Hengge, A. C.; Cleland, W. W. J Am Chem
Soc 1997, 119, 542–549.
30. Cambon, E.; Gouzou, F.; Pina, M.; Barea, B.; Barouh,
N.; Lago, R.; Ruales, J.; Tsai, S.-W.; Villeneuve, P. J
Agric Food Chem 2006, 54, 2726–2731.
31. Peralta, R. A.; Bortoluzzi, A. J.; De Souza, B.; Jovito,
R.; Xavier, F. R.; Couto, R. A. A.; Casellato, A.; Nome,
F.; Dick, A.; Gahan, L. R.; Schenk, G.; Hanson, G. R.;
De Paula, F. C. S.; Pereira-Maia, E. C.; De, P.; Machado,
S.; Severino, P. C.; Pich, C.; Bortolotto, T.; Terenzi, H.;
Castellano, E. E.; Neves, A.; Riley, M. J. Inorg Chem
2010, 49, 11421–11438.
32. Sakiyama, H.; Igarashi, Y.; Nakayama, Y.; Hossain,
M. J.; Unoura, K.; Nishida, Y. Inorg Chim Acta 2003,
351, 256–260.
2
012, 31, 3836–3843.
2
3
4
5
. Wilkinson, G. Comprehensive Coordination Chemistry;
Pergamon Press, New York, 1987.
. Padhye, S.; Afrasiabi, Z.; Sinn, E.; Fok, J.; Mehta, K.;
Rath, N. Inorg Chem 2005, 44, 1154–1156.
. Osowole, A. A.; Akpan, E. J. Eur J Appl Sci 2012, 4,
1
. Osowole, A. A.; Ott, I.; Ogunlana, O. M. Int J Inorg
Chem 2012, 2012, 206417.
. Cozzi, P. G. Chem Soc Rev 2004, 33, 410–421.
. Jiang, W. D.; Xu, B.; Huang, S. T.; Xiang, Z.; Liu, F. A.;
Wang, Y. J Chem Sci 2013, 125, 1145–1149.
. Striegler, S.; Dunaway, N. A.; Gichinga, M. G.; Barnett,
J. D.; Nelson, A.–G. D. Inorg Chem 2010, 49, 2639–
2
4–20.
6
7
8
9
648.
. Anbu, S.; Kamalraj, S.; Varghese, B.; Muthumary, J.;
Kandaswamy, M. Inorg Chem 2012, 51, 5580–5592.
0. Lauria, A.; Bonsignore, R.; Terenzi, A.; Spinello, A.;
Giannici, F.; Longo, A.; Almerico, A. M.; Barone, G.
Dalton Trans 2014, 43, 6108–6119.
33. Jiang, W. D.; Xu, B.; Lin, Q.; Li, J. Z.; Liu, F. A.; Zeng,
X. C.; Chen, H. Colloid Surf, A 2008, 315, 103–109.
34. Cacciapaglia, R.; DiStefano, S.; Kelderman, E.; Man-
dolini, L. Angew Chem, Int Ed 1999, 38, 348–351.
35. Liu, C. T.; Neverov, A. A.; Brown, R. S. J Am Chem
Soc 2008, 130, 13870–13872.
1
1
1. Basu Baul, T. S.; Kundu, S.; Linden, A.; Raviprakash,
N.; Manna, S. K.; Guedes da Silva, M.F. C. Dalton Trans
2
014, 43, 1191–1202.
36. Parac, T. N.; Kostic, N. M. J Am Chem Soc 1996, 118,
51–58.
37. Weston, J. Chem Rev 2005, 105, 2151–2174.
38. Schenk, G.; Miti c´ , N.; Gahan, L. R.; Ollis, D. L.;
McGeary, R. P.; Guddat, L. W. Acc Chem Res 2012,
45, 1593–1603.
1
1
2. Yang, X. B.; Huang, Y.; Zhang, J. S.; Yuan, S. K.; Zeng,
R. Q. Inorg Chem Commun 2010, 13, 1421–1424.
3. Abdel-Rahman, L. H.; El-Khatib, R. M.; Nassr,
L. A. E.; Abu-Dief, A. M. J Mol Struct 2013, 1040,
9
–18.
1
4. Garza-Ortiz, A.; Maheswari, P. U.; Siegler, M.; Spek,
A. L.; Reedijk, J. New J Chem 2013, 37, 3450–3460.
39. Brown, R. S.; Neverov, A. A. Adv Phys Org Chem 2007,
42, 271–331.
International Journal of Chemical Kinetics DOI 10.1002/kin.20904