Paper
RSC Advances
1
0 X.-D. Kong, Q. Ma, J. Zhou, B.-B. Zeng and J.-H. Xu, Angew.
Chem., Int. Ed., 2014, 53, 6641–6644.
Conclusions
In this study, we report on the kinetic resolution of glycidyl 11 K. Wu, H. Wang, H. Sun and D. Wei, Appl. Microbiol.
ethers by Ylehd from Yarrowia lipolytica as an epoxide hydrolase
Biotechnol., 2015, 99, 9511–9521.
belonging to the a/b hydrolase family and is the rst report of 12 Y. Xu, J.-H. Xu, J. Pan and Y.-F. Tang, Biotechnol. Lett., 2004,
an enantioselective EH from this yeast. Homology modelling
26, 1217–1221.
using a two-template approach shows that the protein has 13 J. S. Yadav, M. S. Reddy and A. R. Prasad, Tetrahedron Lett.,
a canonical a/b hydrolase fold. The enzyme showed enantiose-
2006, 47, 4995–4998.
lectivity towards (S)-BGE hydrolysing it to its corresponding 14 F. M. Uckun, C. Mao, A. O. Vassilev, H. Huang and S.-T. Jan,
vicinal diol while retaining (R)-BGE up to 95% ee in a short time
Bioorg. Med. Chem. Lett., 2000, 10, 541–545.
period of 20 min. The selectivity of Ylehd for (S)-BGE could be 15 S. Kotsovolou, R. Verger and G. Kokotos, Org. Lett., 2002, 4,
correlated to its kinetic and thermodynamic parameters as well
2625–2628.
as to the number and proximity of water molecules near the 16 C. Gaul and S. J. Danishefsky, Tetrahedron Lett., 2002, 43,
base H325 in the active site pocket. Thus, this study gives an
9039–9042.
insight into the role played by kinetic and thermodynamic 17 M. Kotik, J. Brichac and P. Kysl ´ı k, J. Biotechnol., 2005, 120,
determinants along with the function of water in the enantio-
364–375.
selective conversion of benzyl glycidyl ether catalysed by Ylehd. 18 Q. Ye, J. Bao and J.-J. Zhong, Bioreactor Engineering Research
The results obtained from this study will be used to engineer
and Industrial Applications I: Cell Factories, Springer, 2016.
a robust biocatalyst and optimize the process parameters for 19 G. Katre, C. Joshi, M. Khot, S. Zinjarde and A. RaviKumar,
conversion of glycidyl ethers with higher yields.
AMB Express, 2012, 2, 36.
2
2
2
2
0 A. Vatsal, S. S. Zinjarde and A. R. Kumar, Biodegradation,
2015, 26, 127–138.
Conflicts of interest
1 M. Agnihotri, S. Joshi, A. R. Kumar, S. Zinjarde and
S. Kulkarni, Mater. Lett., 2009, 63, 1231–1234.
2 C. Bendigiri, S. Zinjarde and A. RaviKumar, Sci. Rep., 2017, 7,
There are no conicts to declare.
11887.
Acknowledgements
3 S. H. Choi, H. S. Kim and E. Y. Lee, Biotechnol. Lett., 2009, 31,
1617–1624.
The authors thank BCUD and DST-PURSE programs, SP Pune
University. CB would like to specially thank Department of 24 F. Xue, Z.-Q. Liu, S.-P. Zou, N.-W. Wan, W.-Y. Zhu, Q. Zhu
Science and Technology, Government of India for the nancial
and Y.-G. Zheng, Process Biochem., 2014, 49, 409–417.
support granted under the DST-WOSA scheme (DST-WOS-A LS/ 25 B. van Loo, J. Kingma, M. Arand, M. G. Wubbolts and
64/2013). CB, SY and AR also wish to thank Daicel Chiral
D. B. Janssen, Appl. Environ. Microbiol., 2006, 72, 2905–2917.
Technologies (India) Pvt Ltd for the help rendered in Chiral 26 D. L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow,
2
HPLC analysis. KH was supported by the NCBS bridge post-
doctoral fellowship. KH and RS thank NCBS (TIFR) for infra-
structural support.
S. M. Franken, M. Harel, S. J. Remington, I. Silman,
J. Schrag and others, Protein Eng., 1992, 5, 197–211.
27 J. Ottosson, L. Fransson and K. Hult, Protein Sci., 2002, 11,
1462–1471.
2
8 M. Kotik, A. Archelas, V. Fam ˇe rov ´a , P. Oubrechtov ´a and
V. K ˇr en, J. Biotechnol., 2011, 156, 1–10.
References
1
M. Tokunaga, J. F. Larrow, F. Kakiuchi and E. N. Jacobsen, 29 M. T. Reetz, M. Bocola, L.-W. Wang, J. Sanchis, A. Cronin,
Science, 1997, 277, 936–938.
M. Arand, J. Zou, A. Archelas, A.-L. Bottalla, A. Naworyta
2
S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga,
and S. L. Mowbray, J. Am. Chem. Soc., 2009, 131, 7334–7343.
K. B. Hansen, A. E. Gould, M. E. Furrow and 30 N. Kasai, T. Suzuki and Y. Furukawa, J. Mol. Catal. B: Enzym.,
E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 1307–1315.
1998, 4, 237–252.
E. J. de Vries and D. B. Janssen, Curr. Opin. Biotechnol., 2003, 31 C. Wei, Y. Chen, H. Shen, S. Wang, L. Chen and Q. Zhu,
4, 414–420. Biotechnol. Lett., 2012, 34, 1499–1503.
S. S. Gill and B. D. Hammock, Biochem. Pharmacol., 1981, 30, 32 M. P. Martins, A. M. Mouad, L. Boschini,
3
4
5
6
7
1
2
111–2120.
B. Schiøtt and T. C. Bruice, J. Am. Chem. Soc., 2002, 124,
4558–14570.
M. H. RegaliSeleghim, L. D. Sette and A. L. Meleiro Porto,
Mar. Biotechnol., 2011, 13, 314–320.
33 R. Kumar, S. I. Wani, N. S. Chauhan, R. Sharma and
D. Sareen, Protein Expression Purif., 2011, 79, 49–59.
34 R. S. Phillips, Trends Biotechnol., 1996, 14, 13–16.
1
C. Morisseau, H. Nellaiah, A. Archelas, R. Furstoss and
J. C. Baratti, Enzyme Microb. Technol., 1997, 20, 446–452.
J. W. Lee, E. J. Lee, S. S. Yoo, S. H. Park, H. S. Kim and 35 T. L. Madden, R. L. Tatusov and J. Zhang, Methods Enzymol.,
E. Y. Lee, Biotechnol. Bioprocess Eng., 2003, 8, 306–308. 1996, 266, 131–141.
S. Wu, A. Li, Y. S. Chin and Z. Li, ACS Catal., 2013, 3, 752–759. 36 J. D. Thompson, D. G. Higgins and T. J. Gibson, Nucleic Acids
8
9
A. L. Botes, C. A. G. M. Weijers, P. J. Botes and M. S. van Dyk,
Res., 1994, 22, 4673–4680.
Tetrahedron: Asymmetry, 1999, 10, 3327–3336.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 12918–12926 | 12925