10.1002/anie.201706378
Angewandte Chemie International Edition
COMMUNICATION
298.
Figure 8. Mechanism of hydrodefluorination and reaction to form
aluminated species.
[7]
[8]
T. Ahrens, J. Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015,
115, 931–972.
D. Lentz, T. Braun, M. F. Kuehnel, Angew. Chem., Int. Ed. 2013,
52, 3328–3348.
[9]
[10]
R. P. Hughes, Eur. J. Inorg. Chem. 2009, 2009, 4591–4606.
V. J. Scott, R. Çelenligil-Çetin, O. V. Ozerov, J. Am. Chem. Soc.
2005, 127, 2852–2853.
[11]
[12]
C. Douvris, O. V. Ozerov, Science 2008, 321, 1188–1190.
W. Gu, M. R. Haneline, C. Douvris, O. V. Ozerov, J. Am. Chem.
Soc. 2009, 131, 11203–11212.
[13]
[14]
R. J. Young, V. V. Grushin, Organometallics 1999, 18, 294–296.
W. Chen, C. Bakewell, M. Crimmin, Synthesis 2017, 49, 810–
821.
[15]
[16]
[17]
[18]
[19]
[20]
[21]
Y. Ishii, N. Chatani, S. Yorimitsu, S. Murai, Chem. Lett. 1998, 27,
157–158.
T. Braun, F. Wehmeier, K. Altenhöner, Angew. Chem., Int. Ed.
2007, 46, 5321–5324.
T. Braun, M. A. Salomon, K. Altenhöner, M. Teltewskoi, S. Hinze,
Angew. Chem., Int. Ed. 2009, 48, 1818–1822.
M. Teltewskoi, J. A. Panetier, S. A. Macgregor, T. Braun, Angew.
Chem., Int. Ed. 2010, 49, 3947–3951.
W.-H. Guo, Q.-Q. Min, J.-W. Gu, X. Zhang, Angew. Chem., Int.
Ed. 2015, 127, 9075–9078.
X.-W. Liu, J. Echavarren, C. Zarate, R. Martin, J. Am. Chem. Soc.
2015, 137, 12470–12473.
J. Zhou, M. W. Kuntze-Fechner, R. Bertermann, U. S. D. Paul, J.
H. J. Berthel, A. Friedrich, Z. Du, T. B. Marder, U. Radius, J. Am.
Chem. Soc. 2016, 138, 5250–5253.
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
M. R. Crimmin, M. J. Butler, A. J. P. White, Chem. Commun.
2015, 51, 15994–15996.
T. Chu, Y. Boyko, I. Korobkov, G. I. Nikonov, Organometallics
2015, 34, 5363–5365.
A. Jana, P. P. Samuel, G. Tavčar, H. W. Roesky, C. Schulzke, J.
Exposing a sample of the 2,3,5,6-tetrafluoropyridine to the
catalytic reaction conditions resulted in facile C–H activation
yielding 3t as the major product (see supporting information). We
propose that C–F alumination process reported herein is a
tandem catalytic reaction: hydrodefluorination precedes
alumination of the resulting C–H bond (Figure 8).
The mechanism of Pd-catalysed hydrodefluorination has
been established, but the mechanism for C–H bond
functionalization is currently unclear. What is clear is that 1
displays reactivity that is both distinct and complementary to the
widely employed borane HBpin. When 1 is replaced with HBpin,
only hydrodefluorination of similar substrates is observed with the
same Pd-catalyst.[41]
Am. Chem. Soc. 2010, 132, 10164–10170.
P. P. Samuel, A. P. Singh, S. P. Sarish, J. Matussek, I. Objartel,
H. W. Roesky, D. Stalke, Inorg. Chem. 2013, 52, 1544–1549.
C. Bakewell, A. J. P. White, M. R. Crimmin, J. Am. Chem. Soc.
2016, 12763–12766.
S. Yow, S. J. Gates, A. J. P. White, M. R. Crimmin, Angew.
Chem., Int. Ed. 2012, 51, 12559–12563.
O. Ekkert, S. D. A. Strudley, A. Rozenfeld, A. J. P. White, M. R.
Crimmin, Organometallics 2014, 33, 7027–7030.
S. I. Kalläne, M. Teltewskoi, T. Braun, B. Braun, Organometallics
2015, 34, 1156–1169.
I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F.
Hartwig, Chem. Rev. 2010, 110, 890–931.
Reaction of 2l with [Al]-H/F catalyzed by [Pd(PCy3)2] also leads
to C–H alumination to form 3l (X = F). This latter species could
also arise from 3l (X = H) effecting the HDF of a further
equivalent of 2l.
In summary, we report a highly active catalytic protocol for
the transformation of C–F and C–H bonds into C–Al bonds. We
are continuing to explore the applications of these new reagents
in synthesis and the mechanism of C–H bond activation.
[32]
[33]
C. Cheng, J. F. Hartwig, J. Am. Chem. Soc. 2015, 137, 592–595.
M. E. Doster, J. A. Hatnean, T. Jeftic, S. Modi, S. A. Johnson, J.
Am. Chem. Soc. 2010, 132, 11923–11925.
J. García-Álvarez, D. V. Graham, A. R. Kennedy, R. E. Mulvey,
S. Weatherstone, Chem. Commun. 2006, 25, 3208–3210.
S. H. Wunderlich, P. Knochel, Angew. Chem., Int. Ed. 2009, 48,
1501–1504.
H. Naka, M. Uchiyama, Y. Matsumoto, A. E. H. Wheatley, M.
McPartlin, J. V. Morey, Y. Kondo, J. Am. Chem. Soc. 2007, 129,
1921–1930.
[34]
[35]
[36]
Acknowledgements
[37]
[38]
[39]
R. McLellan, M. Uzelac, A. R. Kennedy, E. Hevia, R. E. Mulvey,
Angew. Chem. 2017, 56, DOI:10.1002/anie.201706064.
S. Yow, A. E. Nako, L. Neveu, A. J. P. White, M. R. Crimmin,
Organometallics 2013, 32, 5260–5262.
Synthesis of 3o by a non-catalytic route (see SI) showed that the
Pd(PCy3)2 catalyst is required for conversion of the C–H activated
to C–O activated product.
We are grateful to the European Research Council (FluoroCat:
655474, FluoroFix:677367) and the Royal Society (UF090149).
Johnson Matthey are thanked for generous donation of PdCl2.
[40]
While lithium iodide has been shown to promote the oxidative
addition of C–F bonds to [Pd(PCy3)2], in the current case addition
of a Lewis Acid does not promote oxidative addition: M. Ohashi,
R. Doi, S. Ogoshi, Chem. Eur. J. 2014, 20, 2040–2048.
D. Breyer, T. Braun, A. Penner, Dalton Trans. 2010, 39, 7513–
7520.
T. Braun, J. Izundu, A. Steffen, B. Neumann, H.-G. Stammler,
Dalton Trans. 2006, 5118–5123.
N. A. Jasim, R. N. Perutz, A. C. Whitwood, T. Braun, J. Izundu, B.
Neumann, S. Rothfeld, H.-G. Stammler, Organometallics 2004,
23, 6140–6149.
Keywords: C–F activation • C–H activation • alumination •
fluoroarenes • hydrodefluorination
[41]
[42]
[43]
[1]
[2]
[3]
D. O. Hagan, J. Fluorine Chem. 2010, 131, 1071–1081.
C. Isanbor, D. O’Hagan, J. Fluorine Chem. 2006, 127, 303–319.
S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc.
Rev. 2008, 37, 320–330.
[4]
[5]
H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119–2183.
J. L. Kiplinger, T. G. Richmond, C. E. Osterberg, Chem. Rev.
1994, 94, 373–341.
[6]
R. D. Fowler, W. B. Burford III, J. M. Hamilton Jr, R. G. Sweet, C.
E. Weber, J. S. Kasper, I. Litant, Ind. Eng. Chem. 1947, 39, 292–
This article is protected by copyright. All rights reserved.