Organic Letters
Letter
- Eur. J. 2013, 19, 6239. (j) Kimball, D. B.; Hayes, A. G.; Haley, M. M.
Org. Lett. 2000, 2, 3825. (k) Alajarin, M.; Bonillo, B.; Marin-Luna, M.;
Vidal, A.; Orenes, R.-A. J. Org. Chem. 2009, 74, 3558. (l) Ball, C. J.;
Gilmore, J.; Willis, M. C. Angew. Chem., Int. Ed. 2012, 51, 5718.
(m) Zhang, G.; Miao, J.; Zhao, Y.; Ge, H. Angew. Chem., Int. Ed. 2012,
51, 8318.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the funding support of National
Science Foundation of China (21772062, 21602072) and the
National Science Foundation of Anhui Education Department
(KJ2019ZD66 and KJ2016A643).
(9) (a) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH:
Weinheim, 2004. (b) Fluorine in Medicinal Chemistry and Chemical
Biology; Ojima, I., Ed.; Wiley & Sons: Chichester, UK, 2009.
(c) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev.
2014, 114, 2432.
(10) (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc.
Rev. 2016, 45, 2044. (b) Xia, Y.; Wang, J. Chem. Soc. Rev. 2017, 46,
2306. (c) Chen, Z.-Z.; Liu, S.; Hao, W.-J.; Xu, G.; Wu, S.; Miao, J.-N.;
Jiang, B.; Wang, S.-L.; Tu, S.-J.; Li, G. Chem. Sci. 2015, 6, 6654.
(d) Chen, M.; Wang, L.-J.; Ren, P.-X.; Hou, X.-Y.; Fang, Z.; Han, M.-
N.; Li, W. Org. Lett. 2018, 20, 510. (e) Yao, B.; Miao, T.; Li, P.;
Wang, L. Org. Lett. 2019, 21, 124.
REFERENCES
■
(1) For selected reviews, see: (a) Snider, B. B. Chem. Rev. 1996, 96,
339. (b) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.
K.; Lei, A. Chem. Rev. 2017, 117, 9016. (c) Chen, J.-R.; Hu, X.-Q.; Lu,
L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911. (d) Wille, U. Chem.
Rev. 2013, 113, 813. (e) Dhimane, A.-L.; Fensterhank, L.; Malacria,
M. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.;
Wiley-VCH: Weinheim, 2008; p 350. (f) Xuan, J.; Studer, A. Chem.
Soc. Rev. 2017, 46, 4329. (g) Ardkhean, R.; Caputo, D. F. J.; Morrow,
S. M.; Shi, H.; Xiong, Y.; Anderson, E. A. Chem. Soc. Rev. 2016, 45,
1557. (h) Staveness, D.; Bosque, I.; Stephenson, C. R. Acc. Chem. Res.
2016, 49, 2295.
(2) For selected recent examples, see: (a) Alpers, D.; Gallhof, M.;
Witt, J.; Hoffmann, F.; Brasholz, M. A. Angew. Chem., Int. Ed. 2017,
56, 1402. (b) Qiu, J.-K.; Jiang, B.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-
C.; Sun, J.; Wei, P.; Tu, S.-J.; Li, G. J. Am. Chem. Soc. 2015, 137, 8928.
(c) Hu, M.; Fan, J.-H.; Liu, Y.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H.
Angew. Chem., Int. Ed. 2015, 54, 9577. (d) Huang, H.; Procter, D. J. J.
Am. Chem. Soc. 2016, 138, 7770. (e) Alpers, D.; Gallhof, M.; Witt, J.;
Hoffmann, F.; Brasholz, M. Angew. Chem., Int. Ed. 2017, 56, 1402.
(f) Buendia, J.; Chang, Z.; Eijsberg, H.; Guillot, R.; Frongia, A.; Secci,
F.; Xie, J.; Robin, S.; Boddaert, T.; Aitken, D. J. Angew. Chem., Int. Ed.
2018, 57, 6592. (g) Li, Y.; Wang, R.; Wang, T.; Cheng, X.-F.; Zhou,
X.; Fei, F.; Wang, X.-S. Angew. Chem., Int. Ed. 2017, 56, 15436.
(h) Dauncey, E. M.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew.
Chem., Int. Ed. 2018, 57, 744.
(3) (a) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018,
47, 654. (b) Motherwell, W. B.; Pennell, A. M. K. J. Chem. Soc., Chem.
Commun. 1991, 877. (c) Bonfand, E.; Forslund, L.; Motherwell, W.
B.; Vazquez, S. Synlett 2000, 4, 475.
(4) (a) Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. J. Am.
Chem. Soc. 2013, 135, 14480. (b) Kong, W.; Casimiro, M.; Fuentes,
N.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2013, 52, 13086.
(c) Kong, W.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2014, 53,
5078.
́
́
(5) (a) Fuentes, N.; Kong, W.; Fernandez-Sanchez, L.; Merino, E.;
Nevado, C. J. Am. Chem. Soc. 2015, 137, 964. (b) Kong, W.; Fuentes,
N.; García-Domínguez, A.; Merino, E.; Nevado, C. Angew. Chem., Int.
Ed. 2015, 54, 2487.
(6) For selected examples on cinnoline derivatives with biological
activity, see: (a) Lewgowd, W.; Stanczak, A. Arch. Pharm. 2007, 340,
65. (b) Ruchelman, A. L.; Singh, S. K.; Ray, A.; Wu, X.; Yang, J.-M.;
Zhou, N.; Liu, A.; Liu, L. F.; LaVoiea, E. J. Bioorg. Med. Chem. 2004,
12, 795. (c) Nargund, L.; Badiger, V.; Yarnal, S. J. Pharm. Sci. 1992,
81, 365. (d) Yu, Y. N.; Singh, S. K.; Liu, A.; Li, T. K.; Liu, L. F.;
LaVoie, E. J. Bioorg. Med. Chem. 2003, 11, 1475. (e) Alvarado, M.;
́
Barcelo, M.; Carro, L.; Masaguer, C. F.; Ravina, E. Chem. Biodiversity
2006, 3, 106.
(7) (a) Tsuji, H.; Yokoi, Y.; Sato, Y.; Tanaka, H.; Nakamura, E.
Chem. - Asian J. 2011, 6, 2005. (b) Chen, J.-C.; Wu, H.-C.; Chiang,
C.-J.; Peng, L.-C.; Chen, T.; Xing, L.; Liu, S.-W. Polymer 2011, 52,
6011. (c) Dietrich, M.; Heinze, J.; Krieger, C.; Neugebauer, F. A. J.
Am. Chem. Soc. 1996, 118, 5020.
(8) For selected examples, see: (a) Widman, O. Ber. Dtsch. Chem.
Ges. 1884, 17, 722. (b) Widman, O. Ber. Dtsch. Chem. Ges. 1909, 42,
4216. (c) Stoermer, R.; Fincke, H. Ber. Dtsch. Chem. Ges. 1909, 42,
3115. (d) Stoermer, R.; Gaus, O. Ber. Dtsch. Chem. Ges. 1912, 45,
3104. (e) Baumgarten, H. E.; Anderson, C. H. J. Am. Chem. Soc. 1958,
80, 1981. (f) Al-Awadi, N. A.; Elnagdi, M. H.; Ibrahim, Y.; Kaul, K.;
Kumar, A. Tetrahedron 2001, 57, 1609. (g) Kiselyov, A. S. Tetrahedron
Lett. 1995, 36, 1383. (h) Gomaa, M. A. M. Tetrahedron Lett. 2003, 44,
3493. (i) Zhao, D.; Wu, Q.; Huang, X.; Song, F.; Lv, T.; You, J. Chem.
E
Org. Lett. XXXX, XXX, XXX−XXX