D
Synlett
K. Sapkota, F. Huang
Letter
the four hydroxyls of pantethine 5, selective desilylation of
tetra-TBDMS pantethine 6 with 10% formic acid yielded the
disilylated pantethine 7 in 90% isolated yield.
(3) Wipf, P.; Lim, S. J. Am. Chem. Soc. 1995, 117, 558.
(
4) Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda, K.; Satake,
M.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 11893.
5) Smith, A. B.; Xian, M.; Liu, F. Org. Lett. 2005, 7, 4613.
6) Reiff, E. A.; Nair, S. K.; Henri, J. T.; Greiner, J. F.; Reddy, B. S.;
Chakrasali, R.; David, S. A.; Chiu, T.-L.; Amin, E. A.; Himes, R. H. J.
Org. Chem. 2009, 75, 86.
22
(
(
In summary, selective protection of secondary hydroxyl
groups in the presence of primary hydroxyls is of consider-
able interest in chemical synthesis. However, a simple and
efficient procedure is not currently available. Various meth-
ods explore either orthogonal protection/deprotection or
global protection followed by deprotection under condi-
tions with different acids, concentrations, and reaction
time, with varying degrees of success. In contrast, our selec-
tive desilylation of primary TBDMS ethers with 5–20% for-
mic acid in MeCN/water offers a simple, efficient, remark-
ably mild, and environmentally friendly method. With its
acid strength between those of TFA and acetic acid, formic
acid displays an optimal balance between the desilylation
rate and selectivity for primary over secondary TBDMS
ethers. As a result, high yields of primary alcohols with sec-
ondary alcohol protected by TBDMS can be achieved with-
out difficulty.
(7) Battistini, L.; Curti, C.; Zanardi, F.; Rassu, G.; Auzzas, L.;
Casiraghi, G. J. Org. Chem. 2004, 69, 2611.
(8) Sekine, M.; Aoyagi, M.; Ushioda, M.; Ohkubo, A.; Seio, K. J. Org.
Chem. 2005, 70, 8400.
(9) Lee, J.; Panek, J. S. Org. Lett. 2009, 11, 4390.
(
10) (a) Reddy, C. R.; Dharmapuri, G.; Rao, N. N. Org. Lett. 2009, 11,
5730. (b) Ramachandran, P. V.; Srivastava, A.; Hazra, D. Org. Lett.
2007, 9, 157.
(11) Gu, W.; Silverman, R. B. J. Org. Chem. 2011, 76, 8287.
(12) Yokokawa, F.; Inaizumi, A.; Shioiri, T. Tetrahedron 2005, 61,
1459.
(
(
13) Crouch, R. D. Tetrahedron 2013, 69, 2383.
14) Ogilvie, K. K.; Schifman, A. L.; Penney, C. L. Can. J. Chem. 1979,
57, 2230.
(
15) (a) Zhu, X.-F.; Williams, H. J.; Scott, A. I. J. Chem. Soc., Perkin
Trans. 1 2000, 2305. (b) Nelson, T. D.; Crouch, R. D. Synthesis
1996, 1031.
(
(
(
(
(
16) Feixas, J.; Capdevila, A.; Camps, F.; Guerrero, A. J. Chem. Soc.,
Funding Information
Chem. Commun. 1992, 1451.
17) Zhengh, X.-A.; Kong, R.; Huang, H.-S.; Wei, J.-Y.; Chen, J.-Z.;
Gong, S.-S.; Sun, Q. Synthesis 2019, 51, 944.
This work was supported by development fund from the University of
Southern Mississippi, Hattiesburg, MS, USA.()
18) Kawahara, S.-i.; Wada, T.; Sekine, M. J. Am. Chem. Soc. 1996, 118,
9461.
19) Kende, A. S.; Liu, K.; Kaldor, I.; Dorey, G.; Koch, K. J. Am. Chem.
Soc. 1995, 117, 8258.
Supporting Information
20) HPLC conditions: Gemini C18 4.6 × 50 mm column, flow-rate 1
mL/min. The column was run in isocratic mode at 40% MeCN
and 10% 40 mM KH PO for 1 h. Under these conditions, the
Supporting information for this article is available online at
https://doi.org/10.1055/s-0037-1611757.
S
u
p
p
orti
n
g Inform ati
o
n
S
u
p
p
orit
n
g Inform ati
o
n
2
4
retention time for TBDMS-glycolate and TBDMS-lactate were
.2 min and 3.5 min, respectively. The same amount of each of
the reactions at time 0 were injected and used as a control. The
area of peaks of 1 and 3 at different time points of reaction were
quantified using EZChrom Elite software.
3
References and Notes
(
(
1) Corey, E.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
2) (a) Pilcher, A. S.; DeShong, P. J. Org. Chem. 1993, 58, 5130.
b) Nicolaou, K.; Rutjes, F.; Theodorakis, E.; Tiebes, J.; Sato, M.;
(
(
21) Sapkota, K.; Huang, F. Bioorg. Chem. 2018, 76, 23.
(
1
22) Di-TBDMS-pantethine: H NMR (400 MHz, CDCl ): = 7.07 (t, J =
Untersteller, E. J. Am. Chem. Soc. 1995, 117, 1173. (c) Berks, A. H.
Tetrahedron 1996, 52, 331. (d) Chandrasekhar, S.; Mohanty, P.
K.; Takhi, M. J. Org. Chem. 1997, 62, 2628. (e) Kadota, I.;
Takamura, H.; Sato, K.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J.
Am. Chem. Soc. 2003, 125, 46. (f) Marshall, J. A.; Ellis, K. C. Org.
Lett. 2003, 5, 1729. (g) Ghosh, A. K.; Li, J. Org. Lett. 2009, 11,
3
6.2 Hz, 4 H), 6.87 (t, J = 5.9 Hz, 4 H), 3.98 (s, 2 H), 3.57 (s, 4 H),
3.44–3.35 (m, 4 H), 2.80 (t, J = 6.5 Hz, 4 H), 1.00 (s, 6 H), 0.95 (s,
18 H), 0.91 (s, 12 H), 0.80 (s, 6 H)
4164.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D