Organic Letters
Letter
Chem. Soc. 2014, 136, 8915. (d) Denmark, S. E.; Chi, H. M. J. Org. Chem.
2017, 82, 3826. (e) Mizar, P.; Niebuhr, R.; Hutchings, M.; Farooq, U.;
Wirth, T. Chem. - Eur. J. 2016, 22, 1614.
sulfenylation process to other organic transformations are
currently underway in our laboratory.
(7) (a) Nicolaou, K. C.; Seitz, S. P.; Sipio, W. J.; Blount, J. F. J. Am.
Chem. Soc. 1979, 101, 3884. (b) Smit, W. A.; Zefirov, N. S.; Bodrikov, I.
V.; Krimer, M. Z. Acc. Chem. Res. 1979, 12, 282.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(8) (a) Matsumoto, K.; Fujie, S.; Suga, S.; Nokami, T.; Yoshida, J.
Chem. Commun. 2009, 0, 5448. (b) Yang, F.-L.; Wang, F.-X.; Wang, T.-
T.; Wang, Y.-J.; Tian, S.-K. Chem. Commun. 2014, 50, 2111. (c) Vieira,
A.; Azeredo, J. B.; Godoi, M.; Santi, C.; daSilva Junior, E. N.; Braga, A. L.
J. Org. Chem. 2015, 80, 2120. (d) Sun, K.; Lv, Y.-H.; Shi, Z.-D.; Mu, S.-
Q.; Li, C.-H.;Wang, X. Org. Biomol. Chem. 2017, 15, 5258. (e)Alom, N.-
E.; Rina, Y. A.; Li, W. Org. Lett. 2017, 19, 6204. (f) Alom, N.-E.; Wu, F.;
Li, W. Org. Lett. 2017, 19, 930. (g)Parker, P. D.;Lemercier, B. C.;Pierce,
J. G. J. Org. Chem. 2018, 83, 12.
Experimental procedures, analytical data for all new
compounds, NMR spectra of the products (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(9) (a) Hunter, R.; Caira, M.; Stellenboom, N. J. Org. Chem. 2006, 71,
́
8268. (b) Gongora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Chem. Rev.
2014, 114, 901. (c) Maurya, C. K.; Mazumder, A.; Kumar, A.; Gupta, P.
K. Synlett 2016, 27, 409.
Notes
(10) (a) Sevier, C. S.; Kaiser, C. A. Nat. Rev. Mol. Cell Biol. 2002, 3, 836.
(b) Bulaj, G. Biotechnol. Adv. 2005, 23, 87.
The authors declare no competing financial interest.
(11) (a) Trost, B. M.; Ochiai, M.; McDougal, P. G. J. Am. Chem. Soc.
1978, 100, 7103. (b) Toshimitsu, A.; Aoai, T.; Owada, H.; Uemura, S.;
Okano, M. J. Chem. Soc., Chem. Commun. 1980, 412. (c) Bewick, A.;
Mellor, J. M.; Owton, W. M. J. Chem. Soc., Perkin Trans. 1 1985, 1039.
(d) Samii, Z. K. M. A. E.; Ashmawy, M. I. A.; Mellor, J. M. Tetrahedron
Lett. 1986, 27, 5289.
(12) (a) Caserio, M. C.; Fisher, C. L.; Kim, J. K. J. Org. Chem. 1985, 50,
4390. (b) Kondo, T.; Uenoyama, S.-Y.; Fujita, K.-I.; Mitsudo, T.-A. J.
Am. Chem. Soc. 1999, 121, 482. (c) Kondo, T.; Mitsudo, T. Chem. Rev.
2000, 100, 3205. (d) Usugi, S.; Yorimitsu, H.; Shinokubo, H.; Oshima,
K. Org. Lett. 2004, 6, 601.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(21602067) and Huazhong University of Science and Technol-
ogy (2016YXMS183) for financial support. We are also grateful
to the Analytical and Testing Centre of HUST, Analytical and
Testing Centre of the School of Chemistry and Chemical
Engineering (HUST) for access to their facilities.
REFERENCES
■
(13) Ni, Y.; Yu, Q.; Liu, Q.; Zuo, H.; Yu, H.; Wei, W.; Liao, R.; Zhong,
F. Org. Lett. 2018, 20, 1404.
(1) (a) Cremlyn, R. J. An Introduction to Organosulfur Chemistry; John
Wiley and Sons: Chichester, U.K., 1996. (b) Fontecave, M.; Ollagnier-
de-Choudens, S.; Mulliez, E. Chem. Rev. 2003, 103, 2149.
(2) (a) Maddry, J. A.; Bansal, N.; Bermudez, L. E.; Comber, R. N.;
Orme, I. M.; Suling, W. J.; Wilson, L. N.; Reynolds, R. C. Bioorg. Med.
Chem. Lett. 1998, 8, 237. (b) Seehra, J. S.; Kaila, N.; McKew, J. C.;
Bemis, J. E.; Xiang, Y.; Chen, L. U.S. Patent 6630496 B1 20031007,
2003. (c) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014,
57, 10257.
(3) For selected examples on oxysulfenylation, azidosulfenylation, and
disulfidation reactions, see: (a) Denmark, S. E.; Vogler, T. Chem. - Eur. J.
2009, 15, 11737. (b) Wang, H.; Huang, D.; Cheng, D.; Li, L.;Shi, Y. Org.
Lett. 2011, 13, 1650. (c) Keshari, T.; Yadav, V. K.; Srivastava, V. P.;
Yadav, L. D. S. Green Chem. 2014, 16, 3986. (d) Yu, J.; Gao, C.; Song, Z.;
Yang, H.; Fu, H. Org. Biomol. Chem. 2015, 13, 4846. (e) Xi, H.; Deng, B.;
Zong,Z.;Lu,S.;Li,Z. Org.Lett. 2015, 17,1180.(f)Gao, X.;Pan, X.;Gao,
J.; Jiang, H.; Yuan, G.; Li, Y. Org. Lett. 2015, 17, 1038. (g) Wang, H.; Lu,
Q.; Qian, C.; Liu, C.; Liu, W.; Chen, K.; Lei, A. Angew. Chem., Int. Ed.
2016, 55, 1094. (h) Yu, J.; Jiang, M.; Song, Z.; He, T.; Yang, H.; Fu, H.
Adv. Synth. Catal. 2016, 358, 2806. (i) Gao, Y.; Gao, Y.; Tang, X.; Peng,
J.;Hu, M.;Wu, W.;Jiang, H. Org. Lett. 2016, 18, 1158. (j)Zhu, W.;Ding,
Y.;Bian, Z.;Xie, P.; Xu, B.; Tang, Q.;Wu, W.;Zhou, A. Adv. Synth. Catal.
2017, 359, 2215. (k) Li, X.; Guo, Y.; Shen, Z. J. Org. Chem. 2018, 83,
2818. (l) Zhang, R.; Jin, S.; Wan, Y.; Lin, S.; Yan, Z. Tetrahedron Lett.
2018, 59, 841.
(14) (a) Sibi, M. P.; Cook, G. R. In Lewis Acids in Organic Synthesis;
Yamamoto, H., Ed.; Wiley-VCH: Weinheim, Germany, 2000; pp 543−
574. (b) Stanley, L. M.; Sibi, M. P. In Acid Catalysis in Modern Organic
Synthesis; Yamamoto, H., Ishihara, K., Eds.; Wiley-VCH: Weinheim,
Germany, 2008; pp 903−985.
̀
(15) (a) Purseigle, F.; Dubreuil, D.; Marchand, A.; Pradere, J. P.; Goli,
M.; Toupet, L. Tetrahedron 1998, 54, 2545. (b) Manjare, S. T.; Singh, H.
B.;Butcher, R.J. Tetrahedron2012, 68,10561.(c)Liu, H.;Li,X.;Qin, F.;
Huang, K. X. JBIC, J. Biol. Inorg. Chem. 2014, 19, 375. (d) Labunskyy, V.
M.; Hatfield, D. L.; Gladyshev, V. N. Physiol. Rev. 2014, 94, 739. (e) Liu,
H.; Xu, H.; Huang, K. Metallomics 2017, 9, 21.
(16) For selected recent relevant references, see: (a) Cooper, M. A.;
Francis, C. L.; Holman, J. W.; Kasum, B.; Taverner, T.; Tiekink, E. R. T.;
́
Ward, A. D. Aust. J. Chem. 2000, 53, 123. (b) Pedrosa, R.; Andres, C.;
Mendiguchía, P.; Nieto, J. J. Org. Chem. 2006, 71, 5388. (c) Ashikari, Y.;
Shimizu, A.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2013, 135, 16070.
́
́
(d) Nieto, J.; Andres, C.; Perez-Encabo, A. Org. Biomol. Chem. 2015, 13,
9118. (e) Santi, C.; Santoro, S. In Organoselenium Chemistry: Synthesis
and Reactions; Wirth, T., Ed.; Wiley-VCH: Weinheim, 2012; pp 1−38.
(17) (a) Yiannios, C. N.; Karabinos, J. V. J. Org. Chem. 1963, 28, 3246.
(b) Sun, J.; Weng, W.; Li, P.; Zhang, B. Green Chem. 2017, 19, 1128.
(18) A substantial amount of sulfinic acid was detected in the reaction
mixture, and the oxidation mechanism is still unclear. Further controlled
experiments showed disulfide 2a alone was also oxidized under the same
conditions.
(4) For selected recent examples, see: (a) Zheng, Y.; He, Y.; Rong, G.;
Zhang, X.; Weng, Y.; Dong, K.; Xu, X.; Mao, J. Org. Lett. 2015, 17, 5444.
(b) Cui, H.; Liu, X.; Wei, W.; Yang, D.; He, C.; Zhang, T.; Wang, H. J.
Org. Chem. 2016, 81, 2252. (c) Wang, D.; Yan, Z.; Xie, Q.; Zhang, R.;
Lin, S.; Wang, Y. Org. Biomol. Chem. 2017, 15, 1998.
(5) (a) Liu, T.; Tian, J.; Gao, W.-C.; Chang, H.-H.; Liu, Q.; Li, X.; Wei,
W.-L. Org. Biomol. Chem. 2017, 15, 5983. (b) Zhu, Q.; Li, D. K.; Mao, T.
T.; Huang, J. B. Chem. Commun. 2017, 53, 3450. (c) Yu, J.; Cai, C. Org.
Biomol. Chem. 2018, 16, 490.
(19) These significantly lower yields obtained with redox-inactive
Lewis acids in Table 1 also suggest that copper might function as both a
Lewis acid and oxidant mediator. For relevant studies, see: (a) Evans, R.
W.; Zbieg, J. R.; Zhu, S.; Li, W.; MacMillan, D. W. C. J. Am. Chem. Soc.
2013, 135, 16074. (b) Hemric, B. N.; Shen, K.; Wang, Q. J. Am. Chem.
Soc. 2016,138, 5813. (c)Shen, K.;Wang, Q. J. Am. Chem. Soc.2017, 139,
13110. (d)Wu, F.;Stewart, S.;Ariyarathna, J. P.;Li, W. ACSCatal. 2018,
8, 1921.
(6) (a) Denmark, S. E.; Collins, W. R.; Cullen, M. D. J. Am. Chem. Soc.
2009, 131, 3490. (b) Denmark, S. E.; Hartmann, E.; Kornfilt, D. J. P.;
Wang,H. Nat. Chem. 2014,6, 1056.(c)Denmark,S. E.;Chi,H.M. J. Am.
(20)For relevantstudies, see:Penn, J. H.; Smith, R. S. TetrahedronLett.
1986, 27, 3475.
D
Org. Lett. XXXX, XXX, XXX−XXX