Inorganic Chemistry
Article
(9) Behets, G. J.; Dams, G.; Varcauteren, S. R.; Damment, S. J.;
Bouillon, R.; de Broe, M. E.; D’Haese, P. C. Does the phosphate
binder lanthanum carbonate affect bone in rats with chronic renal
failure? J. Am. Soc. Nephrol. 2004, 15, 2219−2228.
(10) Wang, X.; Yuan, L.; Huang, J.; Zhang, T.-L.; Wang, K.
Lanthanum enhances in vitro osteoblast differentiation via pertussis
toxin-sensitive Gi protein and ERK signaling pathway. J. Cell. Biochem.
2008, 105, 1307−1315.
(11) von Rosenberg, S. J.; Wehr, U. A. Lanthanum salts improve
bone formation in a small animal model of post-menopausal
osteoporosis. J. Anim. Physiol. Anim. Nutr. 2012, 96, 885−894.
(12) Pennick, M.; Dennis, K.; Damment, S. J. Absolute bioavailability
and disposition of lanthanum in healthy human subjects administered
lanthanum carbonate. J. Clin. Pharmacol. 2006, 46, 738−746.
nanoparticles targeted to damaged bone tissue. J. Nanopart. Res. 2012,
14, 1175.
(26) Leu, C.-T.; Luegmayr, E.; Freedman, L. P.; Rodan, G. A.;
Reszka, A. A. Relative binding affinities of bisphosphonates for human
bone and relationship to antiresorptive efficacy. Bone 2006, 38, 628−
636.
(27) Rodan, G.; Reszka, A. A.; Golub, E.; Rizzoli, R. Bone safety of
long-term bisphosphonate treatment. Curr. Med. Res. Opin. 2004, 20,
1291−1300.
(28) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.;
Puschmann, H. OLEX2: a complete structure solution, refinement and
analysis program. J. Appl. Crystallogr. 2009, 42, 339−341.
(29) van der Sluis, P.; Spek, A. L. BYPASS: an effective method for
the refinement of crystal structures containing disordered solvent
regions. Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, 194−
201.
(14) Barta, C. A.; Sachs-Barrable, K.; Jia, J.; Thompson, K. H.;
Wasan, K. M.; Orvig, C. Lanthanide containing compounds for
therapeutic care in bone resorption disorders. Dalton Trans. 2007,
5019−5030.
(15) Mawani, Y.; Cawthray, J. F.; Chang, S.; Sachs-Barrable, K.;
Weekes, D. M.; Wasan, K. M.; Orvig, C. In vitro studies of lanthanide
complexes for the treatment of osteoporosis. Dalton Trans. 2013, 42,
5999−6011.
(16) Cawthray, J. F.; Weekes, D. M.; Sivak, O.; Creagh, A. L.;
Ibrahim, F.; Iafrate, M.; Haynes, C. A.; Wasan, K. M.; Orvig, C. In vivo
study and thermodynamic investigation of two lanthanum complexes,
La(dpp)3 and La(XT), for the treatment of bone resorption disorders.
Chem. Sci. 2015, 6, 6439.
(17) Xu, L.; Rettig, S. J.; Orvig, C. Lanthanide chemistry with
(bis[[bis(carboxymethyl) amino]methyl]phosphinate: what does an
extra phosphinate group do to EDTA? Inorg. Chem. 2001, 40, 3734−
3738.
(30) Smith, P. H.; Reyes, Z. E.; Lee, C.-W.; Raymond, K. N.
Characterization of a series of lanthanide amine cage complexes. Inorg.
Chem. 1988, 27, 4154−4165.
(31) Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca,
A. Hyperquad simulation and speciation (HySS): a utility program for
the investigation of equilibria involving soluble and partially soluble
species. Coord. Chem. Rev. 1999, 184, 311−318. Frassineti, C.; Ghelli,
S.; Gans, P.; Sabatini, A.; Moruzzi, M. S.; Vacca, A. Nuclear magnetic
resonance as a tool for determining protonation constants of natural
polyprotic bases in solution. Anal. Biochem. 1995, 231, 374−382.
(32) HyperQuad2013: Equilibrium Constants from Potentiometric
ber 13, 2016). HypSpec: Equilibrium Constants from Solution
htm (accessed September 15, 2016).
(33) Covington, A. K.; Paabo, M.; Robinson, R. A.; Bates, R. G. Use
of the glass electrode in deuterium oxide and the relation between the
standardized pD scale and the operational pH in heavy water. Anal.
Chem. 1968, 40, 700−706.
(18) Platas-Iglesias, C.; Mato-Iglesias, M.; Djanashvili, K.; Muller, R.
N.; Vander Elst, L.; Peters, J. A.; de Blas, A.; Rodríguez-Blas, T.
Lanthanide chelates containing pyridine units with potential
applications as contrast agents in magnetic resonance imaging.
Chem. - Eur. J. 2004, 10, 3579−3590. Balogh, E.; Mato-Iglesias, M.;
(34) Clarke, E. T.; Martell, A. E. Stabilities of the Fe(III), Ga(III) and
In(III) chelates of N,N′,N″-triazacyclononanetriacetic acid. Inorg.
Chim. Acta 1991, 181, 273−280. Wadas, T. J.; Wong, E. H.;
Weisman, G. R.; Anderson, C. J. Coordinating radiometals of copper,
gallium, indium, yttrium and zirconium for PET and SPECT imaging
of disease. Chem. Rev. 2010, 110, 2858−2902.
́
Platas-Iglesias, C.; Toth, E.; Djanashvili, K.; Peters, J. A.; de Blas, A.;
Rodríguez-Blas, T. Pyridine and phosphonate containing acyclic
ligands for stable lanthanide complexation. Extremely fast water
exchange on the on the GdIII chelates. Inorg. Chem. 2006, 45, 8719−
8728.
(35) Clarke, E. T.; Martell, A. E. Stabilities of trivalent metal ion
complexes of the tetraacetate derivatives of 12-, 13- and 14-membered
tetraazamacrocycles. Inorg. Chim. Acta 1991, 190, 37−46. Chaves, S.;
(19) Nonat, A.; Fries, P. H.; Pecaut, J.; Mazzanti, M. Structure,
stability, dynamic, high-field relaxivity and ternary-complex formation
of a new tris(aquo) gadolinium complex. Chem. - Eur. J. 2007, 13,
8489−8506.
(20) Boros, E.; Ferreira, C. L.; Cawthray, J. F.; Price, E. W.; Patrick,
B. O.; Wester, D. W.; Adam, M. J.; Orvig, C. Acyclic chelate with ideal
properties for 68Ga PET imaging agent elaboration. J. Am. Chem. Soc.
2010, 132, 15726−15733.
(21) Price, E. W.; Zeglis, B. M.; Cawthray, J. F.; Ramogida, C. F.;
Ramos, N.; Lewis, S. J.; Adam, M. J.; Orvig, C. H4octapa-trastuzumab:
versatile acyclic chelate system for 111In and 177Lu imaging and
therapy. J. Am. Chem. Soc. 2013, 135, 12707−12721. Price, E. W.;
Cawthray, J. F.; Adam, M. J.; Orvig, C. Modular syntheses of H4octapa
and H2dedpa, and yttrium coordination chemistry relevant to 86Y/90Y
radiopharmaceutical. Dalton Trans. 2014, 43, 7176−7190.
(22) Matveeva, E. V.; Petrovskii, P. V.; Odinets, I. L. Efficient
synthesis of racemic β-aminophosphonates via-Michael reaction in
water. Tetrahedron Lett. 2008, 49, 6129−6133.
Mendonca̧ , A. C.; Marques, S. M.; Prata, M. I.; Santos, A. C.; Martins,
A. F.; Geraldes, C. F. G. C.; Santos, M. A. A gallium complex with a
new tripodal tris-hydroxypyridinone for potential diagnostic imaging:
solution and in vivo studies of 67Ga-labeled species. J. Inorg. Biochem.
2011, 105, 31−38.
(36) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug
Delivery Rev. 2001, 46, 3−26.
(37) Zhang, M.-Q.; Wilkinson, B. Drug discovery beyond the ‘rule of
five’. Curr. Opin. Biotechnol. 2007, 18, 478−488.
(38) Ananchenko, G.; Novakovic, J.; Tikhomirova, A. In Profiles of
Drug Substances, Excipients and Related Methodology, 1st ed.; Brittain,
H. G., Eds.; Academic Press: San Diego, 2013; Vol. 38, Chapter 1, p 5.
(39) Test 107: Partition Coefficient (n-octanol/water): Shake Flask
Method. In OECD Guidelines for the Testing of Chemicals; Section 1:
Physical−Chemical Properties; OECD Publishing: Paris, 1995; pp 1−4.
(40) Price, E. W.; Orvig, C. Matching chelators to radiometals for
́ ́
(23) Kubicek, V.; Kotek, J.; Hermann, P.; Lukes, I. Aminoalkylbis-
(phosphonates): their complexation properties in solution and in the
solid state. Eur. J. Inorg. Chem. 2007, 2007, 333−344.
radiopharmaceuticals. Chem. Soc. Rev. 2014, 43, 260−290. Kubíce
̌
k, V.;
́
Havlíck
̌
ova,
́
J.; Kotek, J.; Tircso,
́
G.; Hermann, P.; Tot
́
h, E.; Lukes, I.
̌
(24) Torres Martin de Rosales, R.; Finucane, C.; Mather, S. J.;
Blower, P. J. Bifunctional bisphosphonate complexes for the diagnosis
and therapy of bone metastases. Chem. Commun. 2009, 4847−4849.
(25) Ross, R. D.; Cole, L. E.; Roeder, R. K. Relative binding affinity
of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold
Gallium(III) complexes of DOTA and DOTA-monoamide: kinetic
and thermodynamic studies. Inorg. Chem. 2010, 49, 10960−10969.
(41) A recipe calculator for thermodynamically correct buffers for pH
Aug 3, 2016).
N
Inorg. Chem. XXXX, XXX, XXX−XXX