X. Qiu et al. / Carbohydrate Polymers 83 (2011) 1723–1729
1729
MH glucose unit. Crystalline properties indicate that an increase
in PCL content in the graft copolymer results in a higher Tm. The
synthesis method can be applied to other oligosaccharides and
biodegradable aliphatic polyesters, such as poly(lactone, lactide,
and glycolide). Furthermore, such copolymers are expected to be
applied as potential drug carrier materials.
Nouvel, C., Frochot, C., Sadtler, V., Dubois, P., Dellacherie, E., & Six, J.-L. (2004).
Polylactide-grafted dextrans: Synthesis and properties at interfaces and in solu-
tion. Macromolecules, 37(13), 4981–4988.
Nouvel, C., Dubois, P., Dellacherie, E., & Six, J.-L. (2004). Controlled synthesis of
amphiphilic biodegradable polylactide-grafted dextran copolymers. Journal of
Polymer Science Part A: Polymer Chemistry, 42(11), 2577–2588.
Ouchi, Tatsuro, Kontani, Tomohiro, & Ohya, Yuichi. (2003). Mechanical property and
biodegradability of solution-cast films prepared from amphiphilic polylactide-
grafted dextran. Journal of Polymer Science Part A: Polymer Chemistry, 41(16),
2462–2468.
Ohya, Yuichi, Maruhashi, Shotaro, & Ouchi, Tatsuro. (1998). Graft polymerization of
L-lactide on pullulan through the trimethylsilyl protection method and degra-
dation of the graft copolymers. Macromolecules, 31(14), 4662–4665.
Portinha, D., Bouteiller, L., Pensec, S., & Richez, A. (2004). Influence of preparation
conditions on the self-assembly by stereocomplexation of polylactide contain-
ing diblock copolymers. Macromolecules, 37(9), 3401–3406.
Acknowledgment
This research was financially supported by the Natural Science
Foundation of China (Grant No. 20604033)
References
Richter,
D.,
Schneiders,
D.,
Monkenbusch,
M.,
&
Willner,
L.
(1997). Polymer aggregates with crystalline cores: The system
polyethylene–poly(ethylenepropylene). Macromolecules, 30(4), 1053–1068.
Rosler, Annette, Vandermeulen, Guido W. M., & Klok, Harm-Anton. (2001). Advanced
drug delivery devices via self-assembly of amphiphilic block copolymers.
Advanced Drug Delivery Reviews, 53(1), 95–108.
Sato, Y., Kobayashi, Y., Kamiya, T., Watanabe, H., Akaike, T., Yoshikawa, K., et al.
(2005). The effect of backbone structure on polycation comb-type copoly-
mer/DNA interactions and the molecular assembly of DNA. Biomaterials, 26(7),
703–711.
Tatsuro, O., Tomohiro, K., & Yuichi, O. (2003). Mechanical property and biodegrad-
ability of solution-cast films prepared from amphiphilic polylactide-grafted
dextran. Journal of Polymer Science Part A: Polymer Chemistry, 41(16), 2462–2468.
Volker, v. B., Gerd, J., & Reimund, S. (1995). Enzymatic grafting of amylose from poly
(dimethylsi1oxanes). Macromolecules, 28, 17–24.
Breitenkamp, K., & Emrick, T. (2003). Novel polymer capsules from amphiphilic graft
copolymers and cross-metathesis. Journal of American Chemical Society, 125(40),
12070–12071.
Caillol, S., Lecommandoux, S., Mingotaud, A.-F., Schappacher, M., Soum, A., Bryson,
N., et al. (2003). Synthesis and self-assembly properties of peptide–polylactide
block copolymers. Macromolecules, 36(4), 1118–1124.
Chang, Y., Bender, J. D., Phelps, M. V. B., & Allcock, H. R. (2002). Synthesis and
self-association behavior of biodegradable amphiphilic poly[bis (ethyl glycinat-
n-yl)phosphazene]–poly(ethylene oxide) block copolymers. Biomacromolecule,
3(6), 1364–1369.
Hua, Y., Jianga, X., Dinga, Y., Gea, H., Yuanb, Y., & Yanga, C. (2002). Synthesis and char-
acterization of chitosan-poly (acrylic acid) nanoparticles. Biomaterials, 23(15),
3193–3201.
Wang, C. Q., Dong, Y. P., & Tan, H. M. (2003). Biodegradable brushlike graft polymers.
I. polymerization of caprolactone onto water-soluble hydroxypropyl cellulose as
the backbone by the protection of the trimethylsilyl group. Journal of Polymer
Science: Part A: Polymer Chemistry, 41, 273–280.
Wang, C., Li, G., & Guo, R. (2005). Multiple morphologies from amphiphilic graft
copolymers based on chitooligosaccharides as backbones and polycaprolactones
as branches. Chemical Communications, 3591–3593.
Xiong, X. Y., Tam, K. C., & Gan, L. H. (2003). Synthesis and aggregation behavior of
pluronic f127/poly (lactic acid) block copolymers in aqueous solutions. Macro-
molecules, 36(26), 9979–9985.
Yao, F., Liu, C., Chen, W., Bai, Y., Tang, Z., & Yao, K. (2003). Synthesis and characteri-
zation of chitosan grafted oligo (l-lactic acid). Macromolecular Bioscience, 3(11),
653–656.
Li, P., Zhu, J., Sunintaboon, P., & Harris, F. W. (2002). New route to amphiphilic
core–shell polymer nanospheres: Graft copolymerization of methyl methacry-
late from water-soluble polymer chains containing amino groups. Langmuir,
18(22), 8641–8646.
Lin, E. K., & Gast, A. P. (1996). Semicrystalline diblock copolymer platelets in dilute
solution. Macromolecule, 29(12), 4432–4441.
Liu, Y., Tian, F., & Hu, K. A. (2004). Synthesis and characterization of a brush-like
copolymer of polylactide grafted onto chitosan. Carbohydrate Research, 339(4),
845–851.
Luo, L., Ranger, M., Lessard, D. G., Garrec, D. L., Gori, S., Leroux, J.-C., et al.
(2004). Novel amphiphilic diblock copolymer of low molecular weight poly
(n-vinylpyrrolidone)-block-poly (d,l-lactide): Synthesis, characterization, and
micellization. Macromolecules, 37(11), 4008–4013.
Jeong, J. H., Kang, H. S., Yang, S. R., & Kim, J.-D. (2002). Polymer micelle-like aggre-
gates of novel amphiphilic biodegradable poly (asparagine) grafted with poly
(caprolactone). Polymer, 44(3), 583–591.
Nie, T., Zhao, Y., Xie, Z. W., & Wu, C. (2003). Micellar formation of poly (caprolactone-
block-ethylene oxide-block-caprolactone) and its enzymatic biodegradation in
aqueous dispersion. Macromolecules, 36(23), 8825–8829.
Ydens, I., Rutot, D., Degee, P., Six, J.-L., Dellacherie, E.,
& Dubois, P. (2000).
Controlled synthesis of poly (-caprolactone)-grafted dextran copolymers
as potential environmentally friendly surfactants. Macromolecules, 33(18),
6713–6721.