162
M. E. Mora-Ramos and C. A. Duque: Polaron Free Energy in GaAs QWs
The relative polaron free energy is not reported for d below 2 nm because that
region a macroscopic continuum model for the GaAs long-wavelength oscillations
would certainly not work well, and its validity is doubtful. When d ! 0, only the bulk
AlAs is present. However, in this study we have not considered so far the contribution
to the electron±phonon interaction coming from the electric potential of the barrier
modes. If taken into account, it will significantly change ꢀby increasing) the polaronic
correction for the smallest values of d;but in the case of well width around 10 nm and
beyond the main contribution should come from GaAs-like polar optical modes.
The results obtained within this model indicate that the effect of the modification of
the GaAs phonon spectrum due to the existence of interfaces is relevant only for layer
ꢁ
thickness not larger than 100 A. Significant differences with the 3D values are obtained
for a GaAs-layer width of a few tens of angstroms. For wide enough wells, the use of
the bulk Fr oÈ hlich Hamiltonian would provide correct results.
Acknowledgement M.E.M.R. acknowledges partial support from CONACYT ꢀMex)
through grant 32270-E.
References
[
[
[
[
[
[
[
[
[
1] G. Hai, F. M. Peeters, and J. T. Devreese, Phys. Rev. B 42, 11063 ꢀ1990).
2] D. L. Lin, R. Chen, and T. F. George, J. Phys.: Condensed Matter 3, 4645 ꢀ1991).
3] R. Zheng, Sh. Ban, and X. X. Liang, Phys. Rev. B 49, 1796 ꢀ1994).
4] M. E. Mora-Ramos and D. A. Contreras-Solorio, Physica 253B, 325 ꢀ1998).
5] K. Arisawa and M. Saitoh, phys. stat. sol. ꢀb) 120, 361 ꢀ1983).
6] D. P. L. Kastrigiano, N. Kokiantonis, and H. Stierstorfer, Phys. Lett. A 104, 364 ꢀ1984).
7] C. Rodr Âi guez and V. K. Fedyanin, Soviet Phys. ±± Nuclear Phys. 15, 4 ꢀ1984).
8] G. D. Mahan, Many-Particle Physics, 2nd. ed., Plenum Press, New York 1990.
9] C. Trallero-Giner, R. P e rez-Alvarez, and F. Garc Âi a-Moliner, Long Wave Polar Modes in
Semiconductor Heterostructures, Pergamon/Elsevier Science, London 1998.
[
[
10] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyalozhinskii, Methods of Quantum Field Theory
in Statistical Physics, Prentice-Hall, New York 1963.
11] M. E. Mora-Ramos, ªFinite Temperature Properties of Electron±Phonon Systems in Semicon-
ducting Heterostructuresº, in: Some Contemp. Probl. in Cond. Mat. Phys., Ed. S. J. Vlaev,
L. M. Gaggero-Sager, Nova Science Commack N.Y. 2000 ꢀin print).