10.1002/anie.202103087
Angewandte Chemie International Edition
RESEARCH ARTICLE
beamtimes. M.A.N. acknowledges Shell Global Solutions for the
partial funding of his position. Electron microscopy work was
performed at the Scientific Centre for Optical and Electron
Microscopy (ScopeM) ETH Zurich.
Table 2. Result of catalytic carbon dioxide hydrogenation over different
catalysts. Unless otherwise indicated, catalytic experiments were performed at
260 °C and 30 bar, catalyst mass: 100 mg, CO2:H2 ratio equals 1:3 and flowrate:
50 ml/min.
Catalyst
Carbon dioxide
conversion, %
Methanol
productivity,
gMeOH·kgcat
1·hour-1
Methanol
selectivity, %
Keywords: CO2 hydrogenation • methanol • PdZn alloy,
operando XAS • isotope-labelling experiment.
-
PdZn/SiO2
2.6
4.4
3.6
3.3
2.8
30
11.2
6.0
[1]
O. Martin, A. J. Martín, C. Mondelli, S. Mitchell, T. F. Segawa, R.
Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Angew.
Chemie Int. Ed. 2016, 55, 6261–6265.
PdZn/Al2O3
27
PdZn/ZnO/SiO2
[a]PdZn/ZnO/SiO2
[a]2Pd-ZnO-np
184
443
384
49.8
65.3
66.5
[2]
[3]
A. García-Trenco, A. Regoutz, E. R. White, D. J. Payne, M. S. P.
Shaffer, C. K. Williams, Appl. Catal. B Environ. 2018, 220, 9–18.
J. L. Snider, V. Streibel, M. A. Hubert, T. S. Choksi, E. Valle, D. C.
Upham, J. Schumann, M. S. Duyar, A. Gallo, F. Abild-Pedersen, T.
F. Jaramillo, ACS Catal. 2019, 9, 3399–3412.
[a] 2Pd-ZnO-np and PdZn/ZnO/SiO2 catalysts were also compared at 260 °C
and 50 bar total pressure, catalyst mass: 50 mg, CO2:H2 ratio equals 1:3 and
flowrate: 50 ml/min.
[4]
[5]
M. S. Frei, C. Mondelli, R. García-Muelas, K. S. Kley, B. Puértolas,
N. López, O. V. Safonova, J. A. Stewart, D. Curulla Ferré, J. Pérez-
Ramírez, Nat. Commun. 2019, 10, 3377.
H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E.
Gibson, W. Jones, C. Brookes, D. Morgan, G. Lalev, J. Catal. 2016,
343, 133–146.
Conclusion
[6]
[7]
[8]
[9]
[10]
F. Lin, X. Jiang, N. Boreriboon, Z. Wang, C. Song, K. Cen, Appl.
Catal. A Gen. 2019, 585, 117210.
In contrast to copper-zinc alloys, we have shown through the
application of operando XAS, that nanoparticulate palladium-zinc
is stable and does not undergo oxidative disruption under the
conditions required for the direct hydrogenation of carbon dioxide
to methanol. More significantly, however, through comparing the
behavior of catalyst systems specifically designed to yield
nanoparticulate palladium-zinc in the absence or presence of a
zinc oxide phase, we have shown that the palladium-zinc alloy
phase by itself is not particularly good at selectively hydrogenating
carbon dioxide to methanol. Instead, in the absence of a co-
existing zinc oxide phase, the palladium-zinc alloy primarily yields
carbon monoxide. When zinc oxide and the palladium-zinc alloy
nanoparticles are both present, the system becomes a far more
active and selective catalyst. At the highest pressures used in this
work, a catalyst based on zinc oxide and palladium-zinc alloy
supported on silica matches the methanol synthesis performance
of typical Pd/ZnO catalysts.
These data show that carbon dioxide hydrogenation to methanol
requires a multifunctional catalyst, with zinc oxide activating
carbon dioxide, and the palladium-zinc alloy splitting hydrogen. In
this system, as with the archetypal Cu/ZnO/Al2O3 case, selective
methanol synthesis is therefore the result of a synergy that exists
between an oxidized zinc phase, upon which active formates may
be hosted, and a metallic phase whose primary function is to
dissociate hydrogen. This hydrogen may then spillover to effect
the selective hydrogenation of the formates and result in the
desired synthesis of methanol, rather than the undesired
formation carbon monoxide.
J. Xu, X. Su, X. Liu, X. Pan, G. Pei, Y. Huang, X. Wang, T. Zhang,
H. Geng, Appl. Catal. A Gen. 2016, 514, 51–59.
H. Choi, S. Oh, S. B. Trung Tran, J. Y. Park, J. Catal. 2019, 376,
68–76.
Q. Tang, W. Ji, C. K. Russell, Z. Cheng, Y. Zhang, M. Fan, Z. Shen,
Appl. Energy 2019, 253, 113623.
E. M. Fiordaliso, I. Sharafutdinov, H. W. P. Carvalho, J. Kehres, J.
D. Grunwaldt, I. Chorkendorff, C. D. Damsgaard, Sci. Technol. Adv.
Mater. 2019, 20, 521–531.
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
D. Wu, K. Deng, B. Hu, Q. Lu, G. Liu, X. Hong, ChemCatChem
2019, 11, 1598–1601.
N. Iwasa, H. Suzuki, MasaoTerashita, M. Arai, N. Takezawa, Catal.
Letters 2004, 96, 75–78.
X.-L. Liang, X. Dong, G.-D. Lin, H.-B. Zhang, Appl. Catal. B Environ.
2009, 88, 315–322.
X.-L. Liang, J.-R. Xie, Z.-M. Liu, Catal. Letters 2015, 145, 1138–
1147.
Y. Yin, B. Hu, X. Li, X. Zhou, X. Hong, G. Liu, Appl. Catal. B
Environ. 2018, 234, 143–152.
M. Armbrüster, M. Behrens, K. Föttinger, M. Friedrich, É. Gaudry, S.
K. Matam, H. R. Sharma, Catal. Rev. 2013, 55, 289–367.
K. Föttinger, J. A. Van Bokhoven, M. Nachtegaal, G. Rupprechter, J.
Phys. Chem. Lett. 2011, 2, 428–433.
V. Lebarbier, R. Dagle, A. Datye, Y. Wang, Appl. Catal. A Gen.
2010, 379, 3–6.
H. Zhou, X. Yang, L. Li, X. Liu, Y. Huang, X. Pan, A. Wang, J. Li, T.
Zhang, ACS Catal. 2016, 6, 1054–1061.
Acknowledgements
F. Lin, X. Jiang, N. Boreriboon, Z. Wang, C. Song, K. Cen, Appl.
Catal. A Gen. 2019, 585, 117210.
We acknowledge the Swiss Light Source (SuperXAS beamline)
and ESRF (Swiss-Norwegian beamline) for providing access to
these facilities for XAS measurements. Dr. O. Safonova and Dr.
W. van Beek are acknowledged for local contacting during
L. Yang, Y. Guo, J. Long, L. Xia, D. Li, J. Xiao, H. Liu, Chem.
Commun. 2019, 55, 14693–14696.
M. W. Tew, H. Emerich, J. A. Van Bokhoven, J. Phys. Chem. C
2011, 115, 8457–8465.
7
This article is protected by copyright. All rights reserved.