C O M M U N I C A T I O N S
Table 2. Kinetic Resolutions of Azomethine Imines: Variation of
the N1 Substituent
a variety of N1 and C5 substituents on the dipole, thereby furnishing
an array of useful enantioenriched azomethine imines. Additional
investigations of copper-catalyzed cycloadditions are underway.
Acknowledgment. Support has been provided by the NIH
(National Institute of General Medical Sciences: R01-GM66960),
the Spanish Ministry of Education and Science (postdoctoral
fellowship to A.S.), Merck Research Laboratories, and Novartis.
Funding for the MIT Department of Chemistry Instrumentation
Facility has been furnished in part by NSF CHE-9808061 and NSF
DBI-9729592.
Supporting Information Available: Experimental procedures and
compound characterization data (PDF). This material is available free
References
a The selectivity factors are the average of two experiments. b Solvent:
CHCl3.
(1) For reviews of kinetic resolution, see: (a) Kagan, H. B.; Fiaud, J. C. Top.
Stereochem. 1988, 18, 249-330. (b) Keith, J. M.; Larrow, J. F.; Jacobsen,
E. N. AdV. Synth. Catal. 2001, 1, 5-26. (c) Robinson, D. E. J. E.; Bull,
S. D. Tetrahedron: Asymmetry 2003, 14, 1407-1446.
(2) For two classic examples of metal-catalyzed kinetic resolution, see: (a)
Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis; Ojima,
I., Ed.; Wiley-VCH: New York, 2000; Chapter 6A. (b) Jacobsen, E. N.
Acc. Chem. Res. 2000, 33, 421-431.
The highly enantioenriched dipoles that are produced in these
kinetic resolutions serve as precursors to useful families of
compounds, such as monocyclic and bicyclic pyrazolidinones. A
few examples are provided in eq 3-5.13
(3) For a review, see: Cardona, F.; Goti, A.; Brandi, A. Eur. J. Org. Chem.
2001, 2999-3011.
(4) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778-10779.
(5) For related examples of copper-catalyzed [3 + 2] cycloadditions of
terminal alkynes, see: (a) Kinugasa, M.; Hashimoto, S. J. Chem. Soc.,
Chem. Commun. 1972, 466-467. (b) Miura, M.; Enna, M.; Okuro, K.;
Nomura, M. J. Org. Chem. 1995, 60, 4999-5004. (c) Rostovtsev, V. V.;
Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002,
41, 2596-2599. (d) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org.
Chem. 2002, 67, 3057-3064. (e) Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto,
Y. J. Am. Chem. Soc. 2003, 125, 7786-7787.
(6) For example, see: (a) Ternansky, R. J.; Holmes, R. A. Drugs Future 1990,
15, 149-157. (b) Ternansky, R. J.; Draheim, S. E. In Recent AdVances
in the Chemistry of â-Lactam Antibiotics; Bentley, P. H., Southgate, R.
H., Eds.; Royal Society of Chemistry: London, 1989; pp 139-156. (c)
Jungheim, L. N.; Sigmund, S. K. J. Org. Chem. 1987, 52, 4007-4013.
(7) For reviews of the chemistry of azomethine imines, see: (a) Schantl, J.
G. Sci. Synth. 2004, 27, 731-824. (b) Grashey, R. In 1,3-Dipolar
Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Vol.
1, pp 733-814.
(8) For reviews of the chemistry and biology of pyrazolidinones, see: (a)
Claramunt, R. M.; Elguero, J. Org. Prep. Proc. Int. 1991, 23, 273-320.
(b) Konaklieva, M. I.; Plotkin, B. J. Curr. Med. Chem.: Anti-InfectiVe
Agents 2003, 2, 287-302. (c) Ref 6b.
(9) Notes: (a) Use of CHCl3 (but not THF or EtOAc) leads to a comparable
selectivity factor. (b) CuCl and CuBr can also be used. (c) The selectivity
factor is not highly temperature-dependent.
In summary, we have developed an effective method for the
kinetic resolution of racemic azomethine imines via copper-
catalyzed [3 + 2] cycloadditions with alkynes. The process tolerates
Table 3. Kinetic Resolutions of Azomethine Imines: Variation of
the C5 Substituent
(10) For a kinetic resolution that proceeds with a selectivity factor of 10, starting
material of 90% ee can be obtained at 62% conversion.
(11) If R (Table 2) is an acyclic alkyl group (e.g., i-Bu), the dipole decomposes
to a small extent during the cycloaddition, thereby precluding a reliable
determination of the selectivity factor.
(12) Through X-ray crystallography, we have determined the absolute con-
figuration of the recovered dipole from entry 2 of Table 3. The other
configurations are assigned by analogy.
(13) For precedent for: (a) Reduction with NaBH4: Greenwald, R. B.; Taylor,
E. C. J. Am. Chem. Soc. 1968, 90, 5273-5274. (b) Addition of a Grignard
reagent: Dorn, H.; Graubaum, H. J. Prakt. Chem. 1976, 318, 253-260.
Rutjes, F. P. J. T.; Udding, J. H.; Hiemstra, H.; Speckamp, W. N.
Heterocycles 1992, 33, 81-85 (the diastereoselectivity was not reported
in either paper). (c) Thermal cycloaddition with dimethyl acetylenedicar-
boxylate: Turk, C.; Svete, J.; Stanovnik, B.; Golic, L.; Golic-Grdadolnik,
S.; Golobic, A.; Selic, L. HelV. Chim. Acta 2001, 84, 146-156. (d)
Hydrolysis: Dorn, H.; Otto, A. Chem. Ber. 1968, 101, 3287-3301.
a The selectivity factors are the average of two experiments. b Reaction
temperature: 0 °C. c 2% Cul/2.2% 3. d Yield of the pyrazolidinone after
reduction of the dipole.
JA052876H
9
J. AM. CHEM. SOC. VOL. 127, NO. 32, 2005 11245