SYNTHESIS OF QUINOLINES BY IRON-CATALYZED REACTION
2727
5. Tsuji, Y., Nishimura, H., Huh, K.T., and Watanabe, Y.J.,
J. Organomet. Chem., 1985, vol. 286, p. 44. DOI:
10.1016/0022- 328X(85)80058-9.
6. Tsuji, Y., Huh, K.T., and Watanabe, Y.J., J. Org.
Chem., 1987, vol. 52, p. 1673. DOI: 10.1021/jo00385a006.
Shimadzu GCMS-QP2010Plus instrument (capillary
column SPB-5, 30 m × 0.25 mm, carrier gas helium,
temperature programming from 40 to 300°C at a rate
of 8 deg/min, evaporation temperature 280°C, the ion
source temperature 200°C, ionization energy 70 eV).
7. Khusnutdinov, R.I., Shchadneva, N.A., Baiguzina, A.R.,
Lavrentieva, Yu.Yu., and Dzhemilev, U.M., Russ.
Chem. Bull., 2002, vol. 51, no. 11, p. 2074. DOI:
10.1023/A: 1021668011691.
8. Khusnutdinov, R.I., Bayguzina, A.R., Aminov, R.I., and
Dzhemilev, U.M., Russ. J. Org. Chem., 2012, vol. 48,
no. 5, p. 690. DOI: 10.1134/S1070428012050107.
9. Khusnutdinov, R.I., Bayguzina, A.R., and Aminov, R.I.,
Russ. Chem. Bull., 2013, vol. 62, no. 1, p. 133. DOI:
10.1007/s11172-013-0019-z.
10. Abraham, R.J. and Reid, M., J. Chem. Soc. Perkin
Trans. 2, 2002, p. 1081. DOI: 10.1039/b201789j.
11. Derdau, V., Atzrodt, J., Zimmermann, J., Kroll, C., and
Bruckner, F., Chem. Eur. J., 2009, vol. 15, p. 10397.
DOI: 10.1002/chem.200901107.
12. Tochilkin, A.I., Kovel'man, I.R., Prokof'ev, E.P.,
Gracheva, I.N., and Levinskii, M.V., Chem. Heterocycl.
Compd., 1988, no. 8, p. 1084. DOI: 10.1007/BF00479345.
13. Xiao, C., Charles, E.G., and Jin-Quan, Y., J. Am. Chem.
Soc., 2006, vol. 128, p. 12634. DOI: 10.1021/ja0646747.
14. Wang, C., Flanigan, D.M., Zakharov, L.N., and
Blakemore, P.R., Org. Lett., 2011, vol. 11, no. 15,
p. 4024. DOI: 10.1021/ol201539d.
The solvents and reagents of analytically pure grade
were used for the synthesis.
General procedure for the preparation of quino-
lines 2a–2l. An ampule was charged with 0.02 mmol
of FeCl3·6H2O, 2 mmol of aniline, 4 mmol of carbon
tetrachloride, and 8 mmol 1,3-propanediol under
argon. The sealed ampule was placed into a pressure
reactor, which was hermetically closed and heated at
150°C for 8 h with continuous stirring. After the
reaction completion, the reactor was cooled to room
temperature, the ampule was opened, the reaction
mixture was poured in hydrochloric acid. The aqueous
layer was separated, neutralized with 10% sodium
hydroxide solution, and extracted with methylene
chloride. The organic layer was filtered, the solvent
was distilled off, and the residue was distilled in a
vacuum. Physicochemical characteristics and spectral
data of the obtained compounds 2a–2l corresponded to
the literature data [10–19].
REFERENCES
15. Hirner, J.J. and Zacuto, M.J., Tetrahedron Lett., 2009,
vol. 50, p. 4989. DOI: 10.1016/j.tetlet.2009.06.077.
16. Joseph-Nathan, P. and Garcia-Martinez, C., Magn. Res.
Chem., 1990, vol. 28, p. 299. DOI: 10.1002/mrc.1260280404.
17. Pan, J., Wang, X., Zhang, Y., and Buchwald, S.L., Org.
Lett., 2011, vol. 13, no. 18, p. 4974. DOI: 10.1021/
ol202098h.
1. Kouznetsov, V.V., Mendez, L.Y.V., and Gomez, C.M.M.,
Curr. Org. Chem., 2005, vol. 9, no. 2, p. 141. DOI:
10.2174/1385272053369196.
2. Khusnutdinov, R.I., Bayguzina, A.R., and Dzhemilev, U.M.,
J. Organomet. Chem., 2014, vol. 768, p. 75. DOI:
10.1016/j. jorganchem.2014.06.008.
18. Monrad, R.N. and Madsen, R., Org. Biomol. Chem.,
3. Yamashkin, S.A. and Oreshkina, E.A., Chem. Heterocycl.
Compd., 2006, vol. 42, no. 6, p. 701. DOI: 10.1007/
s10593-006-0150-y.
4. Majumbar, K.C., Debnath, P., De, N., and Roy, B.,
Curr. Org. Chem., 2011, vol. 15, no. 11, p. 1760. DOI:
10.2174/ 138527211795656633.
2011, vol. 9, p. 610. DOI: 10.1039/c0ob00676a.
19. Kale, B., Shinde, A., Sonar, S., Shingate, B., Kumar, S.,
Ghosh, S., Venugopal, S., and Shingare, M., Tetra-
hedron Lett., 2010, vol. 51, p. 3075. DOI: 10.1016/
j.tetlet.2010.04.012.
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 85 No. 12 2015