Journal of the American Chemical Society
Communication
(7) Kirk, M. L.; Shultz, D. A.; Stasiw, D. E.; Habel-Rodriguez, D.; Stein,
B.; Boyle, P. D. J. Am. Chem. Soc. 2013, 135, 14713.
(8) Kirk, M. L.; Shultz, D. A. Coord. Chem. Rev. 2013, 257, 218.
(9) Kirk, M. L.; Shultz, D. A.; Depperman, E. C.; Habel-Rodriguez, D.;
Schmidt, R. D. J. Am. Chem. Soc. 2012, 134, 7812.
Accordingly, the π-contribution to electronic coupling is ∼13
times greater than the σ-contribution for a planar SQ-Ph-NN
system (HDAπ/HDAσ ∝ √(Jπ/Jσ) = √(180/1). Our results
include experimentally determined values of σ- and π-
contributions to electronic coupling and a minimal dependence
of σ-mediated electronic coupling on the carbon hybridization of
the bridge.
This work also has implications for furthering our under-
standing of conductance in π-conjugated molecular transport
junctions when individual components of the π-system become
decoupled. Here, we anticipate that conductance (G) mediated
by a molecular π-junction will be ∼180 times greater ((Gπ/Gσ) ≈
(Jπ/Jσ) = (180/1) = 180) than that mediated by the
corresponding σ-system, in general accordance with theory.22,30
Full details of the spectroscopy and computational studies for the
biradicals presented here will be reported in a future manuscript.
(10) Kirk, M. L.; Shultz, D. A.; Habel-Rodriguez, D.; Schmidt, R. D.;
Sullivan, U. J. Phys. Chem. B 2010, 114, 14712.
(11) Kirk, M. L.; Shultz, D. A.; Depperman, E. C.; Brannen, C. L. J. Am.
Chem. Soc. 2007, 129, 1937.
(12) Bin-Salamon, S.; Brewer, S. H.; Depperman, E. C.; Franzen, S.;
Kampf, J. W.; Kirk, M. L.; Kumar, R. K.; Lappi, S.; Peariso, K.; Preuss, K.
E.; Shultz, D. A. Inorg. Chem. 2006, 45, 4461.
(13) Kirk, M. L.; Shultz, D. A.; Depperman, E. C. Polyhedron 2005, 24,
(14) Issa, J. B.; Krogh-Jespersen, K.; Isied, S. S. J. Phys. Chem. C 2010,
(15) McConnell, H. M. J. Chem. Phys. 1961, 35, 508.
(16) Davis, W. B.; Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc.
(17) Benniston, A. C.; Harriman, A.; Li, P.; Patel, P. V.; Sams, C. A.
Phys. Chem. Chem. Phys. 2005, 7, 3677.
(18) Hanss, D.; Wenger, O. S. Eur. J. Inorg. Chem. 2009, 2009, 3778.
(19) Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.;
Steigerwald, M. L. Nature 2006, 442, 904.
(20) Vonlanthen, D.; Mishchenko, A.; Elbing, M.; Neuburger, M.;
Wandlowski, T.; Mayor, M. Angew. Chem., Int. Ed. 2009, 48, 8886.
(21) Newton, M. D. Int. J. Quantum Chem. 2000, 77, 255.
(22) Solomon, G. C.; Andrews, D. Q.; Van Duyne, R. R.; Ratner, M. A.
ChemPhysChem 2009, 10, 257.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental and computational details. Synthetic- and X-ray
crystallographic details, magnetic susceptibility data and fits, as
well as absolute energies (in Hartrees) and the coordinates of the
atoms in all the molecules whose geometries were optimized.
The Supporting Information is available free of charge on the
(23) Tuczek, F.; Solomon, E. I. Coord. Chem. Rev. 2001, 219, 1075.
(24) Hadt, R. G.; Gorelsky, S. I.; Solomon, E. I. J. Am. Chem. Soc. 2014,
(25) Ricks, A. B.; Solomon, G. C.; Colvin, M. T.; Scott, A. M.; Chen,
K.; Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2010, 132, 15427.
(26) Su, T. A.; Li, H.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls,
C. Nat. Chem. 2015, 7, 215.
(27) Beratan, D. N. J. Am. Chem. Soc. 1986, 108, 4321.
(28) Goldsmith, R. H.; Vura-Weis, J.; Scott, A. M.; Borkar, S.; Sen, A.;
Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2008, 130, 7659.
(29) Chipman, D. M. J. Chem. Phys. 1991, 94, 6632.
(30) Solomon, G. C.; Bergfield, J. P.; Stafford, C. A.; Ratner, M. A.
Beilstein J. Nanotechnol. 2011, 2, 862.
AUTHOR INFORMATION
■
Corresponding Authors
Author Contributions
∥CombiBlocks, San Diego, California 92126, United States.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
D.A.S. thanks the National Science Foundation (CHE-1213269)
for financial support. D.E.S. thanks the Department of Education,
Graduate Assistance in Areas of National Need (GAANN)
Program for a Fellowship (Nanoscale Electronic and Energy
Materials; P200A090041 and P200A120021). M.L.K. acknowl-
edges the National Science Foundation (NSF CHE-1301142)
for financial assistance. B.W.S. acknowledges NSF Grant No. IIA-
1301346. The single crystal diffraction data for 1-PhMe and 1-
pXylyl were collected at the USF X-ray Facility, Department of
Chemistry, University of South Florida, Tampa.
REFERENCES
■
(1) Shultz, D. A.; Vostrikova, K. E.; Bodnar, S. H.; Koo, H.-J.;
Whangbo, M.-H.; Kirk, M. L.; Depperman, E. C.; Kampf, J. W. J. Am.
Chem. Soc. 2003, 125, 1607.
(2) Weiss, E. A.; Tauber, M. J.; Kelley, R. F.; Ahrens, M. J.; Ratner, M.
A.; Wasielewski, M. R. J. Am. Chem. Soc. 2005, 127, 11842.
(3) Ratner, M. Nat. Nanotechnol. 2013, 8, 378.
(4) Nitzan, A. J. Phys. Chem. A 2001, 105, 2677.
(5) Oberhumer, P. M.; Huang, Y.-S.; Massip, S.; James, D. T.; Tu, G.;
Albert-Seifried, S.; Beljonne, D.; Cornil, J.; Kim, J.-S.; Huck, W. T. S.;
Greenham, N. C.; Hodgkiss, J. M.; Friend, R. H. J. Chem. Phys. 2011,
(6) Kirk, M. L.; Shultz, D. A.; Stasiw, D. E.; Lewis, G. F.; Wang, G.;
Brannen, C. L.; Sommer, R. D.; Boyle, P. D. J. Am. Chem. Soc. 2013, 135,
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX