SATHEESH ET AL.
9 of 10
DMSO‐d6) δ 165.01, 164.33, 149.02, 147.77, 135.00, 134.37,
132.08, 121.58, 121.28, 119.62, 113.63, 113.29, 112.41,
100.34, 97.43, 86.95, 83.15, 82.18, 81.04, 71.00, 56.01,
55.85, 46.00, 36.63, 30.56, 22.86, 21.87, 18.61, 9.14; HR‐
MS: m/z found: 520.15 [(M–Cl) = 520.14)] and calcd for
C27H32ClNRuO3 is 555.07.
ORCID
P. Raghavendra Kumara
REFERENCES
[Ru(p‐cymene)Cl(L2)].2H2O (2): Yield: 149 mg (80%).
M.P.: 190–192 °C. Element. Anal. Calcd. (Found) for
C28H34ClNRuO3: C, 59.09 (59.02); H, 6.02 (5.99); N, 2.46
(2.42). FT‐IR (ν, cm−1): 3574, 3375, 3275, 2958, 2933,
2904, 2872, 2837, 1595, 1512, 1466, 1439, 1315, 1255,
1230, 1153, 1140, 1022, 850, 764, 744, 624,528. UV–Visible
(Methanol), λmax in nm (ε, dm 3 mol−1 cm−1): 204 (42350),
233 (23250), 285 (7550) and 382 (2400); 1H NMR (500 MHz,
DMSO‐d6) δ 7.38 (dd, J = 8.0, 1.6 Hz, 1H), 7.10–7.05 (m,
1H), 6.94 (d, J = 1.6 Hz, 1H), 6.87–6.84 (m, 2H), 6.75 (d,
J = 8.2 Hz, 1H), 6.46–6.41 (m, 1H), 5.43 (d, J = 5.8 Hz,
1H), 5.36 (d, J = 5.9 Hz, 1H), 5.33 (d, J = 5.8 Hz, 1H), 5.17
(d, J = 5.8 Hz, 1H), 4.47 (td, J = 12.4, 5.5 Hz, 1H), 4.12
(td, J = 12.4, 4.9 Hz, 1H), 3.73 (s, 3H), 3.70 (s, 3H), 3.15
(ddd, J = 12.4, 8.7, 3.8 Hz, 1H), 2.89 (td, J = 12.6, 5.6 Hz,
1H), 2.60–2.53 (m, 1H), 2.48 (s, 3H), 2.05 (s, 1H), 1.77 (s,
3H), 1.06 (d, J = 6.9 Hz, 3H), 1.03 (d, J = 6.9 Hz, 3H); 13C
NMR (126 MHz, DMSO‐d6) δ 171.33, 168.68, 149.20,
147.92, 132.41, 132.15, 130.74, 128.75, 123.17, 121.10,
114.42, 113.14, 112.47, 103.04, 95.36, 83.52, 82.15, 81.20,
80.01, 65.34, 56.06, 55.96, 34.70, 31.24, 30.69, 22.82, 21.82,
19.13, 18.35; HR‐MS: m/z found: 534.16 [(M‐Cl) = 534.16]
calcd for C28H34ClNRuO3 is 569.09.
[1] (a)D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621. (b)R.
Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97. (c)A. Fujii,
S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori, J. Am. Chem.
Soc. 1996, 118, 2521. (d)H. Doucet, T. Okumara, K. Murata, T.
Yokozawa, M. Kozawa, E. Katayama, A. T. England, F. Ikariya,
R. Noyori, Angew. Chem. Int. Ed. 1998, 37, 1701. (e)T. Ikariya,
K. Murata, R. Noyori, Org. Biomol. Chem. 2006, 4, 393.
[2] (a)Z. Mazloomi, R. Pretorius, O. Pàmies, M. Albrecht, M.
Diéguez, Inorg. Chem. 2017, 56, 11282. (b)P. N. Sathishkumar,
N. Raveendran, N. S. P. Bhuvanesh, R. Karvembu,
J. Organomet. Chem. 2018, 876, 57. (c)M. M. Sheeba, S. Preethi,
A. Nijamudheen, M. M. Tamizh, A. Datta, L. J. Farrugia, R.
Karvembu, Catal. Sci. Technol. 2015, 5, 4790.
[3] (a)M. G. Sommer, S. Marinova, M. J. Krafft, D. Urankar, D.
Schweinfurth, M. Bubrin, J. Košmrlj, B. Sarkar, Organometal-
lics 2016, 35, 2840. (b)R. A. Farrar‐Tobar, Z. Wei, H. Jiao, S.
Hinze, J. G. de Vries, Chem.‐Eur. J. 2018, 24, 2725. (c)M. C.
Carrión, F. Sepúlveda, F. A. Jalón, B. R. Manzano, A. M.
Rodríguez, Organometallics 2009, 28, 3822. (d)A. Ruff, C.
Kirby, B. C. Chan, A. R. O'Connor, Organometallics 2016,
35, 327. (e)P. Dubey, S. Gupta, A. K. Singh, Dalton Trans.
2018, 47, 3764. (f)M. Kumar, J. DePasquale, N. J. White, M.
Zeller, E. T. Papish, Organometallics 2013, 32, 2135. (g)P.
Pelagatti, M. Carcelli, F. Calbiani, C. Cassi, L. Elviri, C.
Pelizzi, U. Rizzotti, D. Rogolino, Organometallics 2005, 24,
5836. (h)T. Wang, X. Q. Hao, X. X. Zhang, J. F. Gong, M. P.
Song, Dalton Trans. 2011, 40, 8964. (i)E. O. Ozcan, D.
Mercan, N. Gurbuz, E. Cetinkaya, B. Cetinkaya, I. Ozdemir,
Turk. J. Chem. 2011, 35, 699. (j)P. Dani, T. Karlen, R. A.
Gossage, S. Gladiali, G. Van Koten, Angew. Chem. Int. Ed.
2000, 112, 759. (k)G. Venkatachalam, R. Ramesh, Inorg.
Chem. Commun. 2006, 9, 703. (l)A. Bacchi, P. Pelagatti, C.
Pelizzi, D. Rogolino, J. Organomet. Chem. 2009, 694, 3200.
(m)T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300.
(n)S. Kannan, K. N. Kumar, R. Ramesh, Polyhedron 2008,
27, 701. (o)V. Cadierno, P. Crochet, J. G. Alvarez, S. E. G.
Garrido, J. Gimeno, J. Organomet. Chem. 2002, 663, 32. (p)
M. M. Sheeba, M. M. Tamizh, L. J. Farrugia, A. Endo, R.
Karvembu, Organometallics 2014, 33, 540. (q)R. L.
Chowdhury, J. ‐E. Backvall, J. Chem. Soc., Chem. Commun.
1991, 0, 1063.
4.4 | General procedure for TH of ketones
A mixture of ketone (1.0 mmol), Ru catalyst (0.1 mol% of 1
or 2) and hydrogen source (2 mL) was refluxed at 85 °C in
an aerobic atmosphere. After every half an hour, a small
amount of the reaction mixture was filtered through a
short pad of silica bed, eluted with 20 ml of 50% n‐hex-
ane‐ethyl acetate mixture to remove the catalyst and ana-
lyzed by GC till the completion of the reaction. Most of
the alcohol products were isolated by this simple filtration
method. The purity and yields of the products were deter-
mined by GC/GCMS. Some of the products were isolated
and confirmed by 1H NMR spectroscopy.
[4] (a)K. C. Gupta, A. K. Sutar, Coord. Chem. Rev. 2008, 252, 1420.
(b)K. Sztanke, A. Maziarka, A. Osinka, M. Sztanke, Bioorg.
Med. Chem. 2013, 21, 3648. (c)N. E. Borisova, M. D. Reshetova,
Y. A. Ustynyuk, Chem. Rev. 2007, 107, 46.
ACKNOWLEDGEMENTS
[5] (a)N. Mishra, K. Poonia, D. Kumar, Int. J. Adv. Res. Tech. 2013,
2, 52. (b)S. Arulmurugan1, H. P. Kavitha, B. R. Venkatraman,
J. Rasayan, Chem 2010, 3, 385. (c)N. G. Yernale, B. H. M.
Mruthyunjayaswamy, Bioinorg. Chem. Appl. 2014, 2014, 1. (d)
A. Garoufis, S. K. Hadjikakou, N. Hadjiliadis, Coord. Chem.
Rev. 2009, 253, 1384.
P. R. K. thanks CSIR, New Delhi, India for funding this
project [01(2701)/12/EMR‐II]. We sincerely thank Prof.
T. N. Guru Row, Solid State, and Structural Chemistry
Unit, Indian Institute of Science, Bangalore, India for
XRD data collection (L1H and L2H).