Trifluoroacetyltion of Arylamines
Letters in Organic Chemistry, 2011, Vol. 8, No. 8
561
hedron Lett. 2002, 43, 1345-1346; (e) Flosser, D.A.; Olofson, R.A.
A useful conversion of alcohols to alkyl fluorides. Tetrahedron
Lett. 2002, 43, 4275-4279; (f) Banwell, M.G.; Coster, M.J.; Har-
vey, M.J.; Moraes, J. Selective cleavage of N-benzyl-protected
secondary amines by triphosgene. J. Org. Chem. 2003, 68, 613-
6(a1)6H. an, K.-J.; Kim, M. Direct synthesis of Weinreb amides from
carboxylic acids using triphosgene. Lett. Org. Chem., 2007, 4, 20-
22; (b) Kim, M.; Han, K.-J. Convenient synthesis of N-
hydroxysuccinimide esters of carboxylic acids using triphosgene.
Synth. Commun. 2009, 39, 4467-4472.
Typical experimental procedure for the preparation of
trifluoroacetamide: To a stirred solution of trifluoroacetic acid (2
mmol) in CH2Cl2 (10 mL) at 0 oC were added triphosgene (1 mmol)
and triethylamine (10 mmol). And then arylamine (2 mmol) was
added and the reaction mixture was stirred at room temperature un-
til completion. Removal of the solvent by rotary evaporation fol-
lowed by short path silica gel column chromatography purification
using 10 % ethyl acetate in hexane as the mobile phase afforded the
pure product in high yield.
This procedure works well for a variety of arylamines to
produce their corresponding trifluoroacetamides in high
yields. Availability of the reagents, short reaction times, easy
work-up, operations at room temperature make this method a
general and useful method for this transformation.
[13]
[14]
REFERENCES
[1]
[2]
[3]
Green, T.W.; Wuts, P.G.M. Protecting Groups in Organic Synthe-
sis, 4th ed.; Wiley Interscience: New York, 2007.
Fieser, L.F.; Fieser, M. Reagents for Organic Synthesis; John
Wiley & Sons: New York, 1967.
Schallenberg, E.E.; Calvin, M. Ethyl thiotrifluoroacetate as an
acetylating agent with particular reference to peptide synthesis. J.
Am. Chem. Soc. 1955, 77, 2779-2783.
[4]
Staab, H.A.; Walther, G.; Rohr, W. Synthese von carbonsä urean-
hydriden nach der imidazolidmethode. Chem. Ber. 1962, 95, 2073-
2075.
[15]
All compounds are known, and spectral data are in agreement with
authentic samples. Spectral data for selected compounds: Table 1,
entry 3: N-(3-methylphenyl)-2,2,2-trifluoroacetamide (entry 2): Mp
64-65 oC (lit.16b 62-64 oC); TLC Rf 0.32 (10 % ethyl acetate in hex-
ane); IR (KBr): 3296, 3171, 2921, 1727, 1706, 1622, 1599, 1572,
1486, 1464, 1344, 1285, 1261, 1188, 1149, 939, 896, 872, 782, 728
cm-1; 1H NMR (400 MHz, CDCl3): ꢂ 2.23 (s, 3H); 6.95 (d, 1H, J =
7.6 Hz), 7.15 (t, 1H, J = 8.0 Hz), 7.26 (d, 1H, J = 8.0 Hz), 7.29 (s,
[5]
[6]
Bergerson, R.J.; McManis, J.S. Reagents for the stepwise function-
alization of spermine. J. Org. Chem. 1988, 53, 3108-3111.
Keumi, T.; Shimada, M.; Morita, T.; Kitajima, H. 2-
(Trifluoroacetyloxy)pyridine as a mild trifluoroacetylating reagent
of amines and alcohols. Bull. Chem. Soc. Jpn. 1990, 63, 2252-2256.
Xu, D.; Prasad, K.; Repic, O.; Blacklock T.J. Ethyl trifluoroacetate:
A powerful reagent for differentiating amino groups. Tetrahedron
Lett. 1995, 36, 7357-7360.
[7]
1H); 8.20 (br, 1H); 13C NMR (100 MHz, CDCl3): ꢀ 21.2, 115.8 (q,
[8]
Katritzky, A.R.; Yang, B.; Semenzin, D. (Trifluoroacetyl)
benzotriazole: A convenient trifluoroacetylating reagent. J. Org.
Chem. 1997, 62, 726-728.
1JC-F = 286.7 Hz, CF3), 117.8, 121.3, 127.1, 129.0, 135.0, 139.3,
2
155.0 (q, JC-F = 36.7 Hz, C=O); 19F NMR (376 MHz, CDCl3): ꢂ -
76.03 (s, 3F, CF3); Table 1, entry 9: N-(4-bromophenyl)-2,2,2-
trifluoroacetamide: Mp 123-124 oC (lit.16c 124-126 oC); TLC Rf
0.28 (10 % ethyl acetate in hexane); IR (KBr): 3298, 3212, 3147,
1704, 1616, 1557, 1490, 1405, 1280, 1243, 1203, 1155, 1074,
1011, 905, 824, 808, 738 cm-1; 1H NMR (400 MHz, CDCl3): ꢂ
7.35-7.44 (m, 4H), 8.21 (br, 1H); 13C NMR (100 MHz, CDCl3): ꢀ
[9]
López, S.E.; Pérez, Y.; Restrepo, J.; Salazar, J.; Charris, J.
Trifluoroacetylation of arylamines using poly-phosphoric acid
trimethylsilylester (PPSE). J. Fluor. Chem. 2007, 128, 566-569.
Kim, J.-G.; Jang, D.O. Trifluoroacetylation of amines with
trifluoroacetic acid in the presence of trichloroacetonitrile and
triphenylphosphine. Tetrahedron Lett. 2010, 51, 683-685.
(a) Forbus Jr., T.R.; Taylor, S.L.; Martin, J.C. Reactions of the
readily accessible electrophile, trifluoroacetyl triflate: a very reac-
tive agent for trifluoroacetylations at oxygen, nitrogen, carbon, or
halogen centers. J. Org. Chem. 1987, 52, 4156-4159; (b) Salazar,
J.; López, S.E.; Rebollo, O. Direct microwave promoted
trifluoroacetic acid. J. Fluor. Chem. 2003, 124, 111-113; (c)
Ohtaka, J.; Sakamoto, T.; Kikugawa, Y. A one-pot procedure for
trifluoroacetylation of arylamines using trifluoroacetic acid as a
trifluoroacetylating reagent. Tetrahedron Lett. 2009, 50, 1681-
1683.
[10]
[11]
1
115.6 (q, JC-F = 286.8 Hz, CF3), 119.5, 122.2, 132.4, 134.1, 155.1
(q, 2JC-F = 38.2 Hz, C=O); 19F NMR (376 MHz, CDCl3): ꢂ -75.97 (s,
3F, CF3).
[16]
(a) Pailer, M.; H ebsch, W.J. Bestimmung von primären und
sekundären aminen in form von amiden mit hilfe der gaschroma-
tographie auf gepackten und kapillar-säulen. Monatsh. Chem. 1966,
97, 1541-1553; (b) Stauffer, C.E. Hydrolysis of substituted
trifluoroacetanilides. Some Implications for the mechanism of ac-
tion of serine proteases. J. Am. Chem. Soc. 1972, 94, 7887-7891;
(c) Wright, S.W.; Hageman, D.L.; McClure, L.D. Fluoride-
mediated boronic acid coupling reactions. J. Org. Chem., 1994, 59,
6095-6097; (d) Worobey, B. L.; Webster, G.R.B. A possible gener-
alized cleavage reaction for mono- or di- substituted phenylureas
reacted with perfluoroanhydrides. Int. J. Environ. Anal. Chem.
1983, 14, 99-103; (e) Krein, D.M.; Sullivan, P.J.; Turnbull, K. The
reaction of 4-substituted aroyl azides with NaBH4/TFA. Tetrahe-
dron Lett. 1996, 37, 7213-7216.
[12]
(a) Cotarca, L.; Delogu, P.; Nardelli, A.; ꢀunjiꢁ, V.
Bis(trichloromethyl) carbonate in organic synthesis. Synthesis
1996, 553-576, and references therein; (b) Wang, Q.; Huang, R.
Two convenient new syntheses of ferrocenoyl chloride by triphos-
gene. J. Organomet. Chem. 2000, 604, 287-289; (c) Cicchillo,
R.M.; Norris, P. A convenient synthesis of glycosyl chlorides from
sugar hemiacetals using triphosgene as the chlorine source. Carbo-
hydr. Res. 2000, 328, 431-434; (d) Gumaste, V.K.; Bhawal, B.M.;
Deshmukh, A.R.A.S. A mild and efficient method for the prepara-
tion of acyl azides from carboxylic acids using triphosgene. Tetra-
[17]
Kocz, R.; Roestamadji, J.; Mobashery, S. A convenient triphos-
gene-mediated synthesis of symmetric carboxylic acid anhydrides.
J. Org. Chem., 1994, 59, 2913-2914.