Journal of Materials Chemistry A
Paper
Evolution, and Hydrogen Evolution, Adv. Mater., 2017, 29, 20 H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao,
1604942.
Q. Wang and R. Zou, Metal-organic frameworks derived
cobalt phosphide architecture encapsulated into B/N Co-
doped graphene nanotubes for all pH value
electrochemical hydrogen evolution, Adv. Energy Mater.,
2017, 7, 1601671.
6 Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown
and X. Yao, Defect graphene as a trifunctional catalyst for
electrochemical reactions, Adv. Mater., 2016, 28, 9532–9538.
7 M. Pena and J. Fierro, Chemical structures and performance
of perovskite oxides, Chem. Rev., 2001, 101, 1981–2018.
8 D. Chen, C. Chen, Z. M. Baiyee, Z. Shao and F. Ciucci,
Nonstoichiometric oxides as low-cost and highly-efficient
´
21 D. Neagu, G. Tsekouras, D. N. Miller, H. Menard and
J. T. Irvine, In situ growth of nanoparticles through control
of non-stoichiometry, Nat. Chem., 2013, 5, 916.
oxygen reduction/evolution catalysts for low-temperature 22 B. Zhao, L. Zhang, D. Zhen, S. Yoo, Y. Ding, D. Chen,
electrochemical devices, Chem. Rev., 2015, 115, 9869–9921.
9 J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and
Y. Shao-Horn, A perovskite oxide optimized for oxygen
Y. Chen, Q. Zhang, B. Doyle and X. Xiong, A tailored
double perovskite nanober catalyst enables ultrafast
oxygen evolution, Nat. Chem., 2017, 8, 14586.
evolution catalysis from molecular orbital principles, 23 Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu and Z. Shao,
Science, 2011, 334, 1383–1385.
10 J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi,
J. B. Goodenough and Y. Shao-Horn, Design principles for
Enhancing electrocatalytic activity of perovskite oxides by
tuning cation deciency for oxygen reduction and
evolution reactions, Chem. Mater., 2016, 28, 1691–1697.
oxygen-reduction activity on perovskite oxide catalysts for 24 J. I. Jung, H. Y. Jeong, M. G. Kim, G. Nam, J. Park and J. Cho,
fuel cells and metal–air batteries, Nat. Chem., 2011, 3, 546.
11 J. I. Jung, H. Y. Jeong, J. S. Lee, M. G. Kim and J. Cho, A
bifunctional perovskite catalyst for oxygen reduction and
evolution, Angew. Chem., Int. Ed., 2014, 53, 4582–4586.
Fabrication of Ba0.5Sr0.5Co0.8Fe0.2O3ꢀd catalysts with
enhanced electrochemical performance by removing an
inherent heterogeneous surface lm layer, Adv. Mater.,
2015, 27, 266–271.
12 Y. Bu, O. Gwon, G. Nam, H. Jang, S. Kim, Q. Zhong, J. Cho 25 J. Yu, Y. Zhong, X. Wu, J. Sunarso, M. Ni, W. Zhou and
and G. Kim, A highly efficient and robust cation ordered
perovskite oxide as a bifunctional catalyst for rechargeable
zinc-air batteries, ACS Nano, 2017, 11, 11594–11601.
Z. Shao, Bifunctionality from synergy: CoP nanoparticles
embedded in amorphous CoOx nanoplates with
heterostructures for highly efficient water electrolysis, Adv.
Sci., 2018, 1800514.
13 Y. Zhu, J. Dai, W. Zhou, Y. Zhong, H. Wang and Z. Shao,
Synergistically
enhanced
hydrogen
evolution 26 F. Yang, Y. Chen, G. Cheng, S. Chen and W. Luo, Ultrathin
electrocatalysis by in situ exsolution of metallic
nanoparticles on perovskites, J. Mater. Chem. A, 2018, 6,
13582–13587.
nitrogen-doped carbon coated with CoP for efficient
hydrogen evolution, ACS Catal., 2017, 7, 3824–3831.
27 L. Zheng, W. Hu, X. Shu, H. Zheng and X. Fang, Ultrane
CoPx Nanoparticles Anchored on Nitrogen doped reduced
graphene oxides for superior hydrogenation in alkaline
media, Adv. Mater. Interfaces, 2018, 5, 1800515.
14 X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu and Z. Shao, A
perovskite electrocatalyst for efficient hydrogen evolution
reaction, Adv. Mater., 2016, 28, 6442–6448.
15 J. Wang, Y. Gao, D. Chen, J. Liu, Z. Zhang, Z. Shao and 28 D. Khalafallah, O. Y. Alothman, H. Fouad and K. A. Khalil,
F. Ciucci, Water splitting with an enhanced bifunctional
double perovskite, ACS Catal., 2017, 8, 364–371.
16 B. Hua, M. Li, Y.-F. Sun, Y.-Q. Zhang, N. Yan, J. Chen,
T. Thundat, J. Li and J.-L. Luo, A coupling for success:
Nitrogen and carbon functionalized cobalt phosphide as
efficient non-precious electrocatalysts for oxygen reduction
reaction electrocatalysis in alkaline environment, J.
Electroanal. Chem., 2018, 809, 96–104.
controlled growth of Co/CoOx nanoshoots on perovskite 29 Y. Liu, X. Cao, R. Kong, G. Du, A. M. Asiri, Q. Lu and X. Sun,
mesoporous nanobres as high-performance trifunctional
electrocatalysts in alkaline condition, Nano Energy, 2017,
32, 247–254.
Cobalt phosphide nanowire array as an effective
electrocatalyst for non-enzymatic glucose sensing, J. Mater.
Chem. B, 2017, 5, 1901–1904.
17 B. Hua, M. Li and J.-L. Luo, A facile surface chemistry 30 N. Danilovic, R. Subbaraman, D. Strmcnik, K. C. Chang,
approach to bifunctional excellence for perovskite
electrocatalysis, Nano energy, 2018, 49, 117–125.
18 Y.-F. Sun, Y.-L. Yang, J. Chen, M. Li, Y.-Q. Zhang, J.-H. Li,
B. Hua and J.-L. Luo, Toward a rational photocatalyst
A. Paulikas, V. Stamenkovic and N. M. Markovic,
Enhancing the alkaline hydrogen evolution reaction
activity through the bifunctionality of Ni(OH)2/metal
catalysts, Angew. Chem., Int. Ed., 2012, 124, 12663–12666.
design:
a
new formation strategy of co-catalyst/ 31 W. Sheng, H. A. Gasteiger and Y. Shao-Horn, Hydrogen
semiconductor heterostructures via in situ exsolution,
Chem. Commun., 2018, 54, 1505–1508.
19 Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng, M. Zhou, J. Li,
oxidation and evolution reaction kinetics on platinum:
acid vs alkaline electrolytes, J. Electrochem. Soc., 2010, 157,
B1529–B1536.
Y. Qiao, S. Mu and Q. Xu, Co2P–CoN double active centers 32 T. Devic and C. Serre, High valence 3p and transition metal
conned in N-doped carbon nanotube: heterostructural based MOFs, Chem. Soc. Rev., 2014, 43, 6097–6115.
engineering for trifunctional catalysis toward HER, ORR, 33 D. N. Mueller, M. L. Machala, H. Bluhm and W. C. Chueh,
OER, and Zn-air batteries driven water splitting, Adv. Funct.
Mater., 2018, 28, 1805641.
Redox activity of surface oxygen anions in oxygen-decient
26616 | J. Mater. Chem. A, 2019, 7, 26607–26617
This journal is © The Royal Society of Chemistry 2019