Journal of the American Chemical Society
Page 4 of 11
(4)
S.; Jacobs, W. R. Proc. Nat. Acad. Sci. U. S. A. 2010, 107, 21761.
(5) Grzegorzewicz, A. E.; Pham, H.; Gundi, V. A.; Scherman, M.
S.; North, E. J.; Hess, T.; Jones, V.; Gruppo, V.; Born, S. E.;
Kordulakova, J.; Chavadi, S. S.; Morisseau, C.; Lenaerts, A. J.; Lee, R.
E.; McNeil, M. R.; Jackson, M. Nat. Chem. Biol. 2012, 8, 334.
Kalscheuer, R.; Weinrick, B.; Veeraraghavan, U.; Besra, G.
Also in agreement with data from Msmeg, 3-TreAz labeling was
unaffected in the mutant, indicating that selective incorporation of
this analogue by Ag85 is also conserved. 4-TreAz labeling, which
proceeded via the recycling pathway in Msmeg, instead appeared to
primarily use Ag85 in BCG. These results confirmed that pathway-
targeted TreAz labeling can be extended to other mycobacteria,
including pathogenic Mtb.
In summary, metabolic labeling with TreAz enables interroga-
tion of the trehalome in live mycobacteria. We showed that all four
TreAz analogues were effective in Msmeg, BCG, and Mtb, and dis-
tinct routes of TreAz metabolism – mostly conserved across species
– were elucidated through genetic and chemical techniques. This
strategy can be used for imaging glycolipid distribution, trafficking,
and dynamics as well as metabolite profiling and discovery. As well,
the compounds may be employed to assess the effects of various
perturbations (e.g. environmental stress, antibiotic treatment, ge-
netic manipulation) on trehalose glycolipids and their associated
biosynthetic pathways. We also expect that TreAz analogues will be
metabolized in other mycobacterial species given the highly con-
served nature of the involved biosynthetic machinery. Importantly,
the absence of trehalose metabolism in mammals invites the appli-
cation of this chemical tool to investigate the trehalome during
mycobacterial infection in host cells and model organisms.
1
2
3
4
5
6
7
8
(6)
Tahlan, K.; Wilson, R.; Kastrinsky, D. B.; Arora, K.; Nair, V.;
Fischer, E.; Barnes, S. W.; Walker, J. R.; Alland, D.; Barry, C. E., 3rd;
Boshoff, H. I. Antimicrob. Agents Chemother. 2012, 56, 1797.
(7)
45, 801.
(8)
149, 2049.
(9)
Ryll, R.; Kumazawa, Y.; Yano, I. Microbiol. Immunol. 2001,
Indrigo, J.; Hunter, R. L.; Actor, J. K. Microbiology 2003,
Ishikawa, E.; Ishikawa, T.; Morita, Y. S.; Toyonaga, K.;
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Yamada, H.; Takeuchi, O.; Kinoshita, T.; Akira, S.; Yoshikai, Y.;
Yamasaki, S. J. Exp. Med. 2009, 206, 2879.
(10) Sletten, E. M.; Bertozzi, C. R. Angew. Chem. Int. Edit. 2009,
48, 6974.
(11) De Smet, K. A. L.; Weston, A.; Brown, I. N.; Young, D. B.;
Robertson, B. D. Microbiology 2000, 146, 199.
(12) Woodruff, P. J.; Carlson, B. L.; Siridechadilok, B.; Pratt, M.
R.; Senaratne, R. H.; Mougous, J. D.; Riley, L. W.; Williams, S. J.;
Bertozzi, C. R. J. Biol. Chem. 2004, 279, 28835.
(13) Murphy, H. N.; Stewart, G. R.; Mischenko, V. V.; Apt, A. S.;
Harris, R.; McAlister, M. S. B.; Driscoll, P. C.; Young, D. B.; Robertson,
B. D. J. Biol. Chem. 2005, 280, 14524.
(14) Kalscheuer, R.; Syson, K.; Veeraraghavan, U.; Weinrick, B.;
Biermann, K. E.; Liu, Z.; Sacchettini, J. C.; Besra, G.; Bornemann, S.;
Jacobs, W. R. Nat. Chem. Biol. 2010, 6, 376.
(15) Sathyamoorthy, N.; Takayama, K. J. Biol. Chem. 1987, 262,
13417.
(16) Belisle, J. T.; Vissa, V. D.; Sievert, T.; Takayama, K.;
Brennan, P. J.; Besra, G. S. Science 1997, 276, 1420.
(17) Backus, K. M.; Boshoff, H. I.; Barry, C. S.; Boutureira, O.;
Patel, M. K.; D'Hooge, F.; Lee, S. S.; Via, L. E.; Tahlan, K.; Barry, C. E.;
Davis, B. G. Nat. Chem. Biol. 2011, 7, 228.
(18) Niederweis, M.; Danilchanka, O.; Huff, J.; Hoffmann, C.;
Engelhardt, H. Trends Microbiol. 2010, 18, 109.
(19) Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R.
Science 2008, 320, 664.
(20) Jewett, J. C.; Sletten, E. M.; Bertozzi, C. R. J. Am. Chem. Soc.
2010, 132, 3688.
(21) AF488 was used instead of fluorescein for imaging
experiments due to its improved photostability.
(22) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem. Int. Edit. 2002, 41, 2596.
(23) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem.
2002, 67, 3057.
(24) Hett, E. C.; Rubin, E. J. Microbiol. Mol. Biol. Rev. 2008, 72,
126.
(25) Sani, M.; Houben, E. N. G.; Geurtsen, J.; Pierson, J.; de
Punder, K.; van Zon, M.; Wever, B.; Piersma, S. R.; Jiménez, C. R.;
Daffé, M.; Appelmelk, B. J.; Bitter, W.; van der Wel, N.; Peters, P. J.
PLoS pathog. 2010, 6, e1000794.
ASSOCIATED CONTENT
Supporting Information. Experimental procedures, characterization
data, supporting figures, schemes, and tables. This material is available
AUTHOR INFORMATION
Corresponding Author
Present Address
#Department of Chemistry and Biochemistry, University of Arizona,
Tucson, AZ 85721.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank M. Boyce, M. Breidenbach, and S. Canham for helpful dis-
cussions and for critical reading of the manuscript. S. Bauer is acknowl-
edged for providing assistance with HPAEC-PAD instrumentation.
This work was supported by a grant to C.R.B. from the NIH
(AI51622). B.M.S., J. C. J, and M. S. S. were supported by postdoctoral
fellowships from the American Cancer Society, and B.M.S. was also
supported by a fellowship from the Center for Emerging and Neglected
Diseases. C.M.H. was supported by the UC Davis Office of the Vice
Chancellor for Research. R.K. acknowledges support from the Juergen
Manchot Foundation.
(26) Sambou, T.; Dinadayala, P.; Stadthagen, G.; Barilone, N.;
Bordat, Y.; Constant, P.; Levillain, F.; Neyrolles, O.; Gicquel, B.;
Lemassu, A.; Daffé, M.; Jackson, M. Mol. Microbiol. 2008, 70, 762.
REFERENCES
(1)
(2)
Dye, C. Lancet 2006, 367, 938.
Brennan, P. J.; Crick, D. C. Curr. Top. Med. Chem. 2007, 7,
475.
(3)
Hoffmann, C.; Leis, A.; Niederweis, M.; Plitzko, J. M.;
Engelhardt, H. Proc. Nat. Acad. Sci. U. S. A. 2008, 105, 3963.
4
ACS Paragon Plus Environment