equilibrium. The position of the equilibrium, which should
depend on the solvent polarity, controls the rate, and potentially
the mechanism, of the cycloaromatization reaction. Enyne–
allene 2, on the other hand, is locked in the most reactive
conformation and allows us to focus the investigation of
enyne–allene reactivity on electronic factors.
3 R. Ackroyd, C. Kelty, N. Brown and M. Reed, Photochem.
Photobiol., 2001, 74, 656.
4
5
M. Kar and A. Basak, Chem. Rev., 2007, 107, 2861.
F. S. Fouad, C. F. Crasto, Y. Lin and G. B. Jones, Tetrahedron
Lett., 2004, 45, 7753; D. Falcone, J. Li, A. Kale and G. B. Jones,
Bioorg. Med. Chem. Lett., 2008, 18, 934; J. Kagan, X. Wang,
X. Chen, K. Y. Lau, I. V. Batac, R. W. Tuveson and J. B. Hudson,
J. Photochem. Photobiol., B, 1993, 21, 135; N. J. Turro,
A. Evenzahav and K. C. Nicolaou, Tetrahedron Lett., 1994, 35,
8089; T. Kaneko, M. Takahashi and M. Hirama, Angew. Chem.,
Int. Ed., 1999, 38, 1267; I. I. G. Plourde, II, A. El-Shafey,
F. S. Fouad, A. S. Purohit and G. B. Jones, Bioorg. Med. Chem.
Lett., 2002, 12, 2985; J. D. Spence, A. E. Hargrove,
H. L. Crampton and D. W. Thomas, Tetrahedron Lett., 2007,
48, 725.
An initial evaluation of the nuclease activity of the photo-
generated enyne–allene 2 was carried out using supercoiled
plasmid DNA cleavage assays. Three forms of this DNA,
native (RF I), circular relaxed (RF II, produced by single-
strand cleavage), and linear (RF III, formed by scission of
both strand in close proximity), are readily separated by
agarose gel electrophoresis.w To produce reactive enyne–allene
6
7
R. L. Funk, E. R. R. Young, R. M. Williams, M. F. Flanagan and
T. L. Cecil, J. Am. Chem. Soc., 1996, 118, 3291; Z. Zhao,
J. G. Peacock, D. A. Gubler and M. A. Peterson, Tetrahedron
Lett., 2005, 46, 1373; N. Choy, B. Blanco, J. Wen, A. Krishan and
K. C. Russell, Org. Lett., 2000, 2, 3761.
2
in the presence of DNA, a solution of cyclopropenone 1 in
water–DMSO (4 : 1) mixtures was added to a solution of
jX174 supercoiled circular DNA in TE buffer and irradiated
G. Bucher, A. A. Mahajan and M. Schmittel, J. Org. Chem., 2008,
for 10 min using 350 nm lamps (6 Â 4W). The concentration of
7
3, 8815; M. Schmittel, A. A. Mahajan and G. Bucher, J. Am.
Chem. Soc., 2005, 127, 5324.
8 T. Shiraki and Y. Sugiura, Biochemistry, 1990, 29, 9795.
I. V. Alabugin and M. Manoharan, J. Phys. Chem. A, 2003, 107,
363; I. V. Alabugin, M. Manoharan and S. V. Kovalenko, Org.
À1
DNA was kept at 10 ng mL in all experiments, while
the initial concentration of cyclopropenone 1 varied from
9
0
to 5 mM. The duration of irradiation was sufficient to
3
achieve at least 95% conversion of 1, as was determined by
HPLC. The irradiated and control solutions were incubated
for 16 h at 25 1C in the dark and analyzed by gel electro-
phoresis. At concentrations above 0.1 mM, photo-generated
enyne–allene 2 was found to induce ca. 15% single-strand
cleavage of jX174 DNA (RF II), but no observable
double-strand cleavage (RF III). A further increase in the
concentration of precursor 1 results in the reduced photo-
nuclease efficiency due to aggregation of the substrate.
Incubation of the DNA with cyclopropenone precursor 1 in
the dark does not induce any detectable DNA cleavage. The
relatively low nuclease efficiency of 2 can be explained either
by predominant polar cycloaromatization pathway or by the
low affinity of 1 to a dDNA molecule. In order to address the
latter problem, we are currently working on the design and
synthesis of cyclopropenone 1 analogs containing a dDNA
minor-groove binding moiety.
Lett., 2002, 4, 1119; A. E. Clark, E. R. Davidson and J. M. Zaleski,
J. Am. Chem. Soc., 2001, 123, 2650.
10 P. J. Benites, R. C. Holmberg, D. S. Rawat, B. J. Kraft, L. J. Klein,
D. G. Peters, H. H. Thorp and J. M. Zaleski, J. Am. Chem. Soc.,
2003, 125, 6434; S. Bhattacharyya, M. Pink, M. H. Baik and
J. M. Zaleski, Angew. Chem., Int. Ed., 2005, 44, 592.
11 (a) A. Polukhtine, G. Karpov and V. V. Popik, Curr. Top. Med.
Chem., 2008, 8, 460; (b) D. R. Pandithavidana, A. Poloukhtine and
V. V. Popik, J. Am. Chem. Soc., 2009, 131, 351; (c) G. Karpov,
A. Kuzmin and V. V. Popik, J. Am. Chem. Soc., 2008, 130, 11771.
1
2 K. K. Wang, Chem. Rev., 1996, 96, 207.
13 I. H. Goldberg, Acc. Chem. Res., 1991, 24, 191.
4 T. Bekele, S. R. Brunette and M. A. Lipton, J. Org. Chem., 2003,
8, 8471; K. Toshima, K. Ohta, T. Kano, T. Nakamura,
1
6
M. Nakata, M. Kinoshita and S. Matsumura, Bioorg. Med. Chem.,
1996, 4, 105.
15 J. Ciabattoni and E. C. Nathan, J. Am. Chem. Soc., 1969, 91, 4766;
E. V. Dehmlow, R. Neuhaus and H. G. Schell, Chem. Ber., 1988,
1
7
21, 569; A. Poloukhtine and V. V. Popik, J. Org. Chem., 2003, 68,
833.
16 Z.-L. Cheng and Q.-Y. Chen, Chin. J. Chem., 2006, 24, 1219;
Z.-L. Cheng and Q.-Y. Chen, J. Fluorine Chem., 2005, 126, 39;
W. Xu and Q.-Y. Chen, J. Org. Chem., 2002, 67, 9421.
In summary, we have demonstrated that reactive cyclic
enyne–allenes can be photochemically generated from
thermally stable precursors with good quantum and chemical
yields. The reactivity of benzannulated ten-membered ring
enyne–allene 2 depends on the media. In solvents of low
polarity products of the cycloaromatization reaction are
consistent with the intermediate formation of a diradical
species. In 2-propanol, on the other hand, the reactions
apparently proceed via a polar mechanism.
1
7 K. T. Potts and J. S. Baum, Chem. Rev., 1974, 74, 189; B. Halton
and M. G. Banwell, in The Chemistry of Cyclopropyl Group,
ed. Z. Rappoport, Wiley, New York, 1987, 1300.
18 M. Isaka, S. Ejiri and E. Nakamura, Tetrahedron, 1992, 48, 2045.
´
19 C. Crevisy and J.-M. Beau, Tetrahedron Lett., 1991, 32, 3171.
20 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155.
21 K. Takai, M. Tagashira, T. Kudora, K. Oshima, K. Utimoto and
H. Nozaki, J. Am. Chem. Soc., 1986, 108, 6048; T. D. Aicher and
Y. Kishi, Tetrahedron Lett., 1987, 28, 3463; T. Brandstetter
and M. E. Maier, Tetrahedron, 1994, 50, 1435; C. W. Harwig,
S. Py and A. G. Fallis, J. Org. Chem., 1997, 62, 7902.
2
2 A. G. Myers, B. Zheng and M. Movassaghi, J. Org. Chem., 1997,
2, 7507; A. G. Myers and B. Zheng, J. Am. Chem. Soc., 1996, 118,
4492.
Notes and references
6
1
G. B. Jones and F. S. Fouad, Curr. Pharm. Des., 2002, 8, 2415;
D. B. Borders and T. W. Doyle, Enediyne Antibiotics as
Antitumor Agents, Marcel Dekker, New York, 1995;
G. M. Cragg, D. G. Kingston and D. J. Newman, Anticancer
agents from Natural Products, Taylor & Francis Group, Boca
Raton, FL, 2005; A. L. Smith and K. C. Nicolaou, J. Med. Chem.,
23 M. C. Pacheco and V. Gouverneur, Org. Lett., 2005, 7, 1267.
24 A. G. Myers, E. Y. Kuo and N. S. Finnney, J. Am. Chem. Soc.,
1989, 111, 8057; R. Nagata, H. Yamanaka, E. Okazaki and
I. Saito, Tetrahedron Lett., 1989, 30, 4995; A. G. Myers,
P. S. Dragovich and E. Y. Kuo, J. Am. Chem. Soc., 1992, 114,
9369.
25 (a) C. J. Cramer, B. L. Kormos, M. Seierstad, E. C. Sherer and
P. Winget, Org. Lett., 2001, 3, 1881; (b) M. E. Cremeens,
T. S. Hughes and B. K. Carpenter, J. Am. Chem. Soc., 2005,
127, 6652.
1996, 39, 2103.
U. Galm, M. H. Hager, S. G. VanLanen, J. Ju, J. S. Thorson and
2
B. Shen, Chem. Rev., 2005, 105, 739; B. Shen and K. Nonaka, Curr.
Med. Chem., 2003, 10, 2317; M. Gredicak and I. Jeric, Acta
ˇ ´
Pharm., 2007, 57, 133.
This journal is ꢀc The Royal Society of Chemistry 2009
Chem. Commun., 2009, 5707–5709 | 5709