ORGANIC
LETTERS
2012
Vol. 14, No. 7
1788–1791
Enhanced Photochemical [6π]
Electrocyclization within the Lipophilic
Protein Binding Site
Mireia Marin, Virginie Lhiaubet-Vallet,* and Miguel A. Miranda*
´
Instituto de Tecnologıa Quımica UPV-CSIC, Universidad Politecnica de Valencia,
Avda de Los Naranjos s/n, 46022 Valencia, Spain
´
lvirgini@itq.upv.es; mmiranda@qim.upv.es
Received February 16, 2012
ABSTRACT
Photocyclization of N-methyldiphenylamine to N-methylcarbazole is achieved within the microenvironment provided by site I of serum albumins.
Quantum yield determinations, combined with transient absorption spectroscopic detection of the dihydrocarbazole intermediate, demonstrate
that protein encapsulation provides a subtle control of the kinetic parameters, leading to optimized efficiencies.
Photochemical [6π] electrocyclizations are well-estab-
lished tools for the synthesis of a large variety of carbo-
cyclic or heterocyclic compounds.1 These reactions have
also found application in fields such as actinometry,2
photochromism,3 or design of molecular devices.4 From
a mechanistic point of view, they typically arise from the
first (π,π*) singlet excited state.5 An interesting exception
relies on the oxidative photocyclization of diarylamines
(see Figure 1 for the case of N-methyldiphenylamine),
which occurs through a multistep pathway involving two
consecutive triplet excited states. Initial formation of
4a,4b-dihydrocarbazoles is followed by oxidation to
carbazoles.2a,6 Oxygen plays a dual role: on the one hand,
it disfavors the reaction by quenching the amine triplet
excited state, whereas on the other hand, it is required as a
reagent for the final oxidative step.7 In this context, the
binding sites of serum albumins (SAs) would represent an
ideal microenvironment to optimize the photocyclization
efficiency by providing a subtle control of the involved
kinetic parameters.
Upon encapsulation, the photobehavior of guest mole-
cules is modulated not only as a result of conformational
restrictions imposed by the rigidity of protein cavities, but
also by the controlled diffusion of oxygen.8 These two
aspects have been previously tackled by comparing the
kinetic parameters of N-methyldiphenylamine photocycli-
zation in micro-heterogeneous media with those obtained
in water.9,10 In the case of cyclodextrins, a lower rate of
(1) (a) Bach, T.; Hehn, J. P. Angew. Chem., Int. Ed. 2011, 50, 1000. (b)
Albini, A.; Fagnoni, M. In Handbook of Synthetic Photochemistry;
Wiley-VCH: Weinheim, 2010.
€
(2) (a) Forster, E. W.; Grellmann, K.-H.; Linschitz, H. J. Am. Chem.
Soc. 1973, 95, 3108. (b) Yoshihara, T.; Yamaji, M.; Itoh, T.; Nishimura,
J.; Shizuka, H.; Tobita, S. J. Photochem. Photobiol., A 2001, 140, 7.
(3) (a) Fukumoto, S.; Nakashima, T.; Kawai, T. Angew. Chem Int.
Ed. 2011, 50, 1565. (b) Irie, M. Photochem. Photobiol. Sci. 2010, 9, 1535.
(4) (a) Irie, M. Chem. Rev. 2000, 100, 1685. (b) Golovkova, T. A.;
Kozlov, D. V.; Neckers, D. C. J. Org. Chem. 2005, 70, 5545.
(5) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. In Modern Mole-
cular Photochemistry of Organic Molecules; University Science Books:
Sausalito, California, 2010; pp 856.
(7) Fischer, G.; Fischer, E.; Grellman, K. H.; Linschitz, H.; Temizer,
A. J. Am. Chem. Soc. 1974, 96, 6267.
(8) (a) Alonso, R.; Jimenez, M. C.; Miranda, M. A. Org. Lett. 2011,
13, 3860. (b) Lhiaubet-Vallet, V.; Bosca, F.; Miranda, M. A. J. Phys.
Chem. B 2007, 111, 423–431. (c) Lhiaubet-Vallet, V.; Sarabia, Z.; Bosca,
F.; Miranda, M. A. J. Am. Chem. Soc. 2004, 126, 9538. (d) Vaya, I.;
Bueno, C. J.; Jimenez, M. C.; Miranda, M. A. ChemMedChem 2006, 1,
1015.
€
(6) (a) Grellmann, K.-H.; Kuhnle, W.; Weller, H.; Wolff, T. J. Am.
€
Chem. Soc. 1981, 103, 6889. (b) Gorner, H. J. Phys. Chem. A 2008, 112,
1245.
r
10.1021/ol3003805
Published on Web 03/14/2012
2012 American Chemical Society