of a â,γ-unsaturated ester as a new donor class in direct
catalytic Mannich-type reactions.10,11 The Ba-catalyst not only
promoted the Mannich-type reactions of the â,γ-unsaturated
ester, but also isomerized Mannich adducts to afford â-meth-
yl aza-Morita-Baylis-Hillman-type products in up to 88%
yield.12 Preliminary studies on enantioselective reactions are
also described.
metal catalyst would readily generate a dienolate in situ from
1. The dienolate reacts with imine 2 at the R- and/or
γ-position. If the catalyst further deprotonates the R-proton
from the R-adduct, the C-C double bond would isomerize
to give a â-amino ester 3 bearing an R-alkylidene group.
Despite recent progress in aza-Morita-Baylis-Hillman (aza-
MBH) reactions including enantioselective variants,13,14 ap-
plicable substrates in aza-MBH reactions are mostly limited
to cyclic enones, â-unsubstituted acyclic enones, and related
esters. aza-MBH reactions with â-substituted R,â-unsaturated
esters are rare due to their low reactivity.15 Thus, we decided
to search for a suitable catalyst to selectively promote the
R-addition/isomerization sequence using â,γ-unsaturated
ester 1 to provide an alternative approach for â-substituted
aza-MBH adducts.16
Possible reaction pathways with use of a â,γ-unsaturated
ester 1 are shown in Scheme 1. The acidity of the proton at
Scheme 1. Mannich-Type Reaction/Isomerization Sequence
with a â,γ-Unsaturated Ester
We screened several metal aryloxides for racemic reactions
using N-diphenylphosphinoyl (N-Dpp) imine17 2a and 1.3
equiv of benzyl ester 1 (Table 1, entries 1-5).18 LiOAr (Ar
) 4-MeO-C6H4) and Ba(OAr)2 promoted both the Mannich-
type R-addition and desired isomerization at 0 °C to afford
product (E)-3a in 51% (entry 1) and 74% (entry 3) yield,
respectively. Considering the extension to an asymmetric
variant, Ba(OAr)2 was selected for further studies.19 The use
of another alkaline earth metal (entry 2: Ca), and rare earth
metals (entries 4 and 5: Sc and La) gave trace, if any, product
3a. The first Mannich-type reaction was problematic in
(13) For recent reviews on MBH reaction and aza-MBH reactions, see:
(a) Masson, G.; Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46,
4614. (b) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. ReV. 2003,
103, 811.
(14) For selected leading references: (a) Shi, M.; Xu, Y.-M. Angew.
Chem., Int. Ed. 2002, 41, 4507. (b) Kawahara, S.; Nakano, A.; Esumi, T.;
Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 3103. (c) Balan, D.;
Adolfsson, H. Tetrahedron Lett. 2003, 44, 2521. (d) Shi, M.; Xu, Y.-M.;
Shi, Y.-L. Chem. Eur. J. 2005, 11, 1794. (e) Raheem, I. T.; Jacobsen, E.
N. AdV. Synth. Catal. 2005, 347, 1701. (f) Matsui, K.; Takizawa, S.; Sasai,
H. J. Am. Chem. Soc. 2005, 127, 3680 and references cited therein. For
other examples, see ref 13 and references cited therein.
(15) Racemic aza-MBH reactions with acyclic â-substituted esters. (a)
Shi, Y.-L.; Shi, M. Tetrahedron 2006, 62, 461. For the use of an acyclic
â-substituted ester in racemic MBH reactions: (b) Krishna, P. R.;
Narsingam, M.; Reddy, P. S.; Srinivasulu, G.; Kunwar, A. C. Tetrahedron
Lett. 2005, 46, 8885. (c) Aggarwal, V. K.; Emme, I.; Fulford, S. Y. J. Org.
Chem. 2003, 68, 692.
(16) For alternative approaches to R-alkylidene-â-amino esters, nitriles,
and ketones, see: Pd-catalyzed allylic aminations: (a) Trost, B. M.; Oslob,
J. D. J. Am. Chem. Soc. 1999, 121, 3057. (b) Mori, M.; Nakanishi, M.;
Kajishima, D.; Sato, Y. J. Am. Chem. Soc. 2003, 125, 9801. (c) Nemoto,
T.; Fukuyama, T.; Yamamoto, E.; Tamura, S.; Fukuda, T.; Matsumoto, T.;
Akimoto, Y.; Hamada, Y. Org. Lett. 2007, 9, 927. Phosphine-catalyzed
allylic aminations: (d) Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett.
2004, 6, 1337. Vanadium-catalyzed isomerization/addition sequence of
propargyl alcohols to imines: (e) Trost, B. M.; Chung, C. K. J. Am. Chem.
Soc. 2006, 128, 10358. For other approaches, see also: (f) Wei, H.-X.;
Hook, J. D.; Fitzgerald, K. A.; Li, G. Tetrahedron: Asymmetry 1999, 10,
661. (g) Li, G.; Wei, H. X.; Whittlesey, B. R.; Batrice, N. N. J. Org. Chem.
1999, 64, 1061. (h) Reginato, G.; Mordini, A.; Valacchi, M.; Piccardi, R.
Tetrahedron: Asymmetry 2002, 13, 595.
the R-position of the ester group is increased due to the
neighboring C-C double bond. Therefore, a Brønsted basic
(6) For selected recent examples, see: (a) Marigo, M.; Kjærsgaard, A.;
Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. 2003, 9, 2359.
(b) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005,
127, 11256. (c) Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.;
Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44, 1525. (d)
Poulsen, T. B.; Alemparte, C.; Saaby, S.; Bella, M.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2005, 44, 2896. (e) Song, J.; Wang, Y.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 6048. (f) Sasamoto, N.; Dubs, C.; Hamashima, Y.;
Sodeoka, M. J. Am. Chem. Soc. 2006, 128, 14010. (g) Tillman, A. L.; Ye,
J.; Dixon, D. J. Chem. Commun. 2006, 1191. (h) Ting, A.; Lou, S.; Schaus,
S. E. Org. Lett. 2006, 8, 2003. (i) Fini, F.; Bernardi, L.; Herrera, R. P.;
Pettersen, D.; Ricci, A.; Sgarzani, V. AdV. Synth. Catal. 2006, 348, 2043.
(j) Song, J.; Shih, H.-W.; Deng, L. Org. Lett. 2007, 9, 603. For related
reactions with a diketone, see also: (k) Uraguchi, D.; Terada, M. J. Am.
Chem. Soc. 2004, 126, 5356.
(7) Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2005, 44, 4365.
(8) Racemic reactions: (a) Morimoto, H.; Wiedemann, S. H.; Yamaguchi,
A.; Harada, S.; Chen, Z.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int.
Ed. 2006, 45, 3146. Asymmetric reactions: (b) Morimoto, H.; Lu, G.;
Aoyama, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc., published
(9) Racemic reactions: Saito, S.; Tsubogo, T.; Kobayashi, S. Chem.
Commun. 2007, 1236.
(10) â,γ-Unsaturated nitriles and a â,γ-unsaturated ester were utilized
in direct catalytic aldol reactions. The isomerization step to afford MBH-
type adducts was, however, problematic when using the â,γ-unsaturated
ester: Kisanga, P. B.; Verkade, J. G. J. Org. Chem. 2002, 67, 426.
(11) Diastereoselective addition of a dienolate from a â,γ-unsaturated
ester to imines with chiral auxiliary afforded R-alkylidene-â-amino esters;
however, stoichiometric amounts of LDA were required in the method:
Garcia Ruano, J. L.; Ferna´ndez, I.; del Prado Catalina, M.; Hermoso, J. A.;
Sanz-Aparicio, J.; Mart´ınez-Ripoll, M. J. Org. Chem. 1998, 63, 7157.
(12) Recently, an elegant organocatalytic enantioselective Mannich-type
reaction/isomerization sequence using R,â-unsaturated aldehydes and
R-imino esters to produce chiral R-alkylidene-â-amino aldehydes was
reported. Excellent enantioselectivity (99% ee) and stereoselectivity were
achieved; however, 5 equiv of donor and 1 equiv of imidazole were used
in the system to obtain isomerized adducts in good yield: Utsumi, N.; Zhang,
H.; Tanaka, F.; Barbas, C. F., III Angew. Chem., Int. Ed. 2007, 46, 1878.
(17) A review on the utility of N-Dpp-imines: (a) Weinreb, A. M.; Orr,
R. K. Synthesis 2005, 1205. For the use of N-Dpp-imines in direct Mannich-
type reactions, see: (b) Matsunaga, S.; Kumagai, N.; Harada, S.; Shibasaki,
M. J. Am. Chem. Soc. 2003, 125, 4712. (c) Sugita, M.; Yamaguchi, A.;
Yamagiwa, N.; Handa, S.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2005,
7, 5339. See also ref 4a.
(18) Benzyl ester 1 was selected in this study because benzyl ester is
easily detected on TLC and is less volatile than methyl ester.
(19) For chiral Ba-aryloxide catalysts: (a) Yamada, Y. M. A.; Shibasaki,
M. Tetrahedron Lett. 1998, 39, 5561. (b) Saito, S.; Kobayashi, S. J. Am.
Chem. Soc. 2006, 128, 8704. For the utility of Ba-aryloxides in racemic
direct catalytic Mannich-type reactions, see ref 9.
3388
Org. Lett., Vol. 9, No. 17, 2007