Article
Organometallics, Vol. 29, No. 22, 2010 6003
various heterocyclic products.6 The majority of these organo-
metallic compounds contain a group 10 metal, with palladium
being the most versatile one,7 followed by platinum and then
nickel. Also Mn, Fe, Co, Ru, Rh, Os, and Ir are popular transi-
tion metals for cyclometalation reactions, and recently the
synthesis of the first “rollover”-cyclometalated gold complex
was reported.8 Quite a few mechanistic studies, dealing with
the formation of cyclometalated compounds, were conducted
during the last decades, addressing electronic aspects,9 the
influence of the transition metal,10 or the effect of the donor
atom that is coordinated to the metal center.11 However, mecha-
nistic studies of the so-called “rollover” cyclometalation,12
where decomplexation and rotation of a heteroaryl ring
constitute prerequisites for a metal-mediated activation of
a C-H bond, are quite rare, and there are only very few
comparative studies for cyclometalation reactions of the group
10 metals Ni, Pd, and Pt.13 Gas-phase experiments are ideally
suited to probe the intrinsic features of a chemical reaction in
contrast to solution-phase experiments, which—by definition—
are obscured by often ill-defined solvent and aggregation
effects as well as the influence of counterions. Earlier, we
have reported in quite some detail on the gas-phase generation
of “rollover”-cyclometalated [Pt(bipy - H)]þ (2-Pt; Chart 1)
starting from the corresponding platinum-methyl complexes
[Pt(CH3)(bipy)((CH3)2S)]þ and [Pt(CH3)(bipy)]þ (1-PtMe).14
In the present study, we extend this work to the nickel and
palladium complexes, 2-Ni and 2-Pd, respectively; moreover,
we were interested to probe whether or not halogens, especially
chlorine, are also adequate ligands for the formation of 2 via an
intramolecular C-H bond activation. In addition, mechanistic
Chart 1. Overview of the Relevant Structural Units
[M(X)(bipy)]þ (1 = 1-MX), [M(bipy - H)]þ (2 = 2-M), and
[M(bipy)]þ (3 = 3-M) with M = Ni, Pd, Pt and X = CH3, F, Cl,
Br, I, OAc As Well As of the Deuterated 2,20-Bipyridine Ligands
[3,30-D2]-bipy and [6,60-D2]-bipy Used in This Study
Table 1. Overview of the m/z Values That Were Chosen for Mass
Selection in Order to Produce a [D2]-Enriched [M(X)(bipy)]þ Ion
Beam (M = Ni, Pd, Pt; X = CH3, Cl, F) Together with the
Resulting [D0], [D1], and [D2] Fractions (given in %)
m/z
[D0]
[D1]
[D2]
[3,30-D2]-1-NiCl
[6,60-D2]-1-NiCl
[3,30-D2]-1-PdCl
[6,60-D2]-1-PdCl
[3,30-D2]-1-PtCl
[3,30-D2]-1-PtMe
[3,30-D2]-1-NiF
[6,60-D2]-1-NiF
251a
251a
301b
301b
391c
369d
235e
235e
2
3
1
2
0
1
1
2
3
1
3
1
3
3
0
1
95
96
96
97
97
96
99
97
a The [D2] fraction of the signal contains exclusively [D2]-1-58Ni35Cl.
b The [D2] fraction of the signal contains [D2]-1-108Pd35Cl (74%), [D2]-
1-106Pd37Cl (24%), and a small amount of 13C-containing [D2]-1-105Pd37Cl
(2%). c The [D2] fraction of the signal contains [D2]-1-198Pt35Cl (44%),
[D2]-1-196Pd37Cl (49%), and 13C-containing [D2]-1-195Pt37Cl (7%). d The
[D2] fraction of the signal contains [D2]-1-196PtMe (87%) and 13C contain-
ing [D2]-1-195PtMe (13%) (but only 1.3% [D2]-1-195Pt13CH3). e The [D2]
fraction of the signal contains exclusively [D2]-1-58NiF.
(6) (a) Pfeffer, M. Pure Appl. Chem. 1992, 64, 335. (b) Vicente, J.; Abad,
J.-A.; Bergs, R.; Jones, P. G.; Ramirez de Arellano, M. C. Organometallics
1996, 15, 1422. (c) Ferstl, W.; Sakodinskaya, I. K.; Beydoun-Sutter, N.; Le
Borgne, G.; Pfeffer, M.; Ryabov, A. D. Organometallics 1997, 16, 411. (d)
Hwang, S. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 16158. (e)
Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 9651.
(7) (a) Ryabov, A. D. Synthesis 1985, 233. (b) Dupont, J.; Pfeffer, M.;
Spencer, J. Eur. J. Inorg. Chem. 2001, 2001, 1917.
aspects are addressed; for example, are we dealing with an OA/
RE (oxidative addition/reductive elimination) or rather a
metathesis scenario in the “rollover” cyclometalation to gen-
erate 2 and HX for the different metals M = Ni, Pd, Pt and the
ligands X = CH3, Cl?15 Furthermore, as many synthetic proce-
dures for the generation of cyclometalated palladium com-
plexes are based on the use of palladium acetate,1h,7a,9c,16
1-PdOAc has been included in our investigations and compared
with 1-NiOAc in order to study if X = OAc can also serve
as a suitable precursor ligand for the formation of “rollover”-
cyclometalated transition-metal complexes in the gas phase.
Here, we present the results for the gas-phase fragmenta-
tions of [M(CH3)(bipy)]þ and [M(Cl)(bipy)]þ (M=Ni, Pd,
Pt; bipy = 2,20-bipyridine), [Ni(X)(bipy)]þ (X=F, Cl, Br, I),
and [M(OAc)(bipy)]þ (M = Ni, Pd) generated via electro-
spray ionization (ESI).17 2,20-Bipyridine has been chosen not
only because bipy and related heterocyclic systems represent
versatile ligands in the coordination chemistry of transition-
metal complexes18 but bipy possesses the potential to bring
about “rollover” cyclometalation.12,14 Labeling experiments
have been conducted to trace the origin of the hydrogen atom
(8) Cocco, F.; Cinellu, M. A.; Minghetti, G.; Zucca, A.; Stoccoro, S.;
Maiore, L.; Manassero, M. Organometallics 2010, 29, 1064.
(9) (a) Bruce, M. I.; Gardner, R. C. F.; Stone, F. G. A. J. Chem. Soc.,
Dalton Trans. 1976, 81. (b) Takahashi, H.; Tsuji, J. J. Organomet. Chem.
1967, 10, 511. (c) Canty, A. J.; van Koten, G. Acc. Chem. Res. 1995, 28, 406.
(d) Owen, J. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2004, 126,
8247. (e) Li, L.; Brennessel, W. W.; Jones, W. D. Organometallics 2009, 28,
3492.
(10) Bruce, M. I.; Goodall, B. L.; Stone, F. G. A. J. Chem. Soc.,
Chem. Commun. 1973, 558.
(11) Parshall, G. W. Acc. Chem. Res. 1970, 3, 139.
(12) (a) Wickramasinghe, W. A.; Bird, P. H.; Serpone, N. J. Chem. Soc.,
Chem. Commun. 1981, 1284. (b) Constable, E. C.; Seddon, K. R. J. Chem. Soc.,
Chem. Commun. 1982, 34. (c) Nord, G.; Hazell, A. C.; Hazell, R. G.; Farver, O.
Inorg. Chem. 1983, 22, 3429. (d) Spellane, P. J.; Watts, R. J.; Curtis, C. J. Inorg.
Chem. 1983, 22, 4060. (e) Dholakia, S.; Gillard, R. D.; Wimmer, F. L. Inorg.
Chim. Acta 1983, 69, 179. (f) Braterman, P. S.; Heath, G. A.; MacKenzie, A. J.;
Noble, B. C.; Peacock, R. D.; Yellowlees, L. J. Inorg. Chem. 1984, 23, 3425. (g)
Skapski, A. C.; Sutcliffe, V. F.; Young, G. B. J. Chem. Soc., Chem. Commun.
1985, 609. (h) Minghetti, G.; Doppiu, A.; Zucca, A.; Stoccoro, S.; Cinellu, M.;
Manassero, M.; Sansoni, M. Chem. Heterocycl. Compd. 1999, 35, 992. (i)
Zucca, A.; Doppiu, A.; Cinellu, M. A.; Stoccoro, S.; Minghetti, G.; Manassero, M.
Organometallics 2002, 21, 783. (j) Minghetti, G.; Stoccoro, S.; Cinellu, M. A.;
Soro, B.; Zucca, A. Organometallics 2003, 22, 4770. (k) Zucca, A.; Cinellu,
M. A.; Minghetti, G.; Stoccoro, S.; Manassero, C. Eur. J. Inorg. Chem. 2004,
4484. (l) Stoccoro, S.; Zucca, A.; Petretto, G. L.; Cinellu, M. A.; Minghetti, G.;
Manassero, M. J. Organomet. Chem. 2006, 691, 4135. (m) Minghetti, G.;
Stoccoro, S.; Cinellu, M. A.; Petretto, G. L.; Zucca, A. Organometallics 2008, 27,
3415. (n) Zucca, A.; Petretto, G. L.; Stoccoro, S.; Cinellu, M. A.; Manassero, M.;
Manassero, C.; Minghetti, G. Organometallics 2009, 28, 2150.
(15) For a detailed discussion of various mechanistic scenarios of gas-
ꢀ
phase organometallic transformations, see: Armelin, M.; Schlangen,
M.; Schwarz, H. Chem.—Eur. J. 2008, 14, 5229.
(16) (a) Gomez, M.; Granell, J.; Martinez, M. Organometallics 1997,
ꢀ
16, 2539. (b) Gomez, M.; Granell, J.; Martinez, M. J. Chem. Soc., Dalton
Trans. 1998, 37. (c) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am.
Chem. Soc. 2005, 127, 13754.
(18) (a) Togni, A.; Venanzi, L. M. Angew. Chem., Int. Ed. Engl. 1994,
33, 497. (b) Himeda, Y.; Onozawa-Komatsuzaki, N.; Miyazawa, S.; Sugi-
hara, H.; Hirose, T.; Kasuga, K. Chem.—Eur. J. 2008, 14, 11076.
(13) Piro, N. A.; Owen, J. S.; Bercaw, J. E. Polyhedron 2004, 23, 2797.
€
(14) (a) Butschke, B.; Schlangen, M.; Schroder, D.; Schwarz, H.
€
Chem.—Eur. J. 2008, 14, 11050. (b) Butschke, B.; Schroder, D.; Schwarz,
H. Organometallics 2009, 28, 4340.