added, followed after 10 min by 10% aq. Na2SO3 (10 cm3) and
ethyl acetate (20 cm3). The reaction was allowed to attain room
temperature with the organic phase being washed consecutively
with sat. NaHCO3 (20 cm3) and brine (20 cm3), dried (MgSO4)
and concentrated under reduced pressure. Purification by RBC
(CHCl3-acetone 4 : 1 → 6:4) furnished the fully protected
trisphosphate 8 (431 mg, 53%). dH(270 MHz; CDCl3; Me4Si)
121.88 (C-11), 137.76 (C-8, C-2), 143.05 (C-4), 144.59 (C-6);
dP(109.2 MHz; D2O; 1H decoupled) −0.17, 0.39, 0.77 (3 s); m/z
(FAB) 694.0 [(M + H)+, 75%]; mass calcd for C18H27N5O18P3
(M + H)+, 694.05640; found 694.05368.
8-Bromo-3ꢀ-O-a-D-glucopyranosyl adenosine 2ꢀ, 3ꢀꢀ,4ꢀꢀ-trisphos-
phate (5). To a stirred solution of adenophostin A 2 (22 mg,
32.9 lmol) in 0.5 M sodium acetate buffer (1 cm3, pH 4.3) was
added a solution of Br2 (23 mg, 0.14 mmol) in 0.5 M sodium
acetate buffer (2 cm3, pH 4.3) dropwise. The reaction mixture
was stirred in the dark at room temperature for 60 h monitoring
the pH occasionally and adding additional buffer if necessary.
The solution was partitioned between CHCl3 (5 cm3) and water
with the aqueous layer being treated with solid NaHSO3 to
remove excess Br2. The aqueous layer was further extracted with
CHCl3 (3 × 5 cm3) and concentrated under reduced pressure.
Purification using an MP1 AG ion-exchange column eluting
with 0–100% 150 mM TFA (elution between 40–70%) gave the
desired compound 5 (9.6 mg, 41%). dH(400 MHz; D2O) 3.58–
3.50–3.70 (5 H, m, H-5ꢀA, H-5ꢀB, H-2ꢀꢀ, H-6ꢀꢀA, H-6ꢀꢀ ), 3.79–3.88
B
(1 H, m, H-5ꢀꢀ), 4.12 (1 H, AB, JAB 7.3, 0.5 × OCH2Ar)
4.26–4.86 (14 H, m, 5.5 × OCH2Ar, H-3ꢀ, H-4ꢀ, H-4ꢀꢀ), 4.87–5.06
(8 H, m, 3.5 ×; OCH2Ar, H-3ꢀꢀ), 5.32 (1H, d, J1ꢀꢀ ꢀꢀ 3.7, H-1ꢀꢀ),
,2
5.56–5.66 (1 H, m, H-2ꢀ), 5.70 (2 H, br s, NH2), 6.34 (1 H, d, J1 ,2
ꢀ
ꢀ
6.6, H-1ꢀ), 6.94–7.41 (45 H, m, ArH), 7.90, 8.25 (2 H, 2 s, H-8,
H-2); dC(100.5 MHz; CDCl3; Me4Si) 68.64 (C-6ꢀꢀ), 69.44–70.41
(C-5ꢀ, 6 × POCH2Ar with C–P coupling), 70.16 (C-5ꢀꢀ), 71.91,
73.66, 73.90 (3 × OCH2Ar), 74.10 (C-4ꢀꢀ), 74.68 (C-3ꢀ), 77.04
(C-2ꢀꢀ), 77.55 (C-2ꢀ with C–P coupling), 78.39 (C-3ꢀꢀ with C–P
coupling), 82.72 (C-4ꢀ), 85.89 (C-1ꢀ), 95.67 (C-1ꢀꢀ), 119.98 (C-5),
127.15, 127.81, 127.89, 127.93, 127.96, 128.04, 128.16, 128.56,
128.49, 128.51, 128.62, 128.65, 128.69, 128.74, 128.80 (ArCH),
135.23–136.37 (6 × ipso-C of benzylphospho ring with C–P
coupling) 137.52, 137.77, 138.18 (3 × ipso-C of Bn ring), 139.64
(C-8), 150.25 (C-4), 153.11 (C-2), 155.33 (C-6); dP(161.8 MHz;
3.78 (6 H, m, H-2ꢀꢀ, H-5ꢀꢀ, H-5ꢀA, H-5ꢀB, H-6ꢀꢀA, H-6ꢀꢀ ), 3.83 (1 H,
B
q, J3ꢀꢀ ꢀꢀ = J4ꢀꢀ ꢀꢀ 9.4, H-4ꢀꢀ), 4.32 (2 H, m, H-4ꢀ, H-3ꢀꢀ), 4.53 (1 H, m,
,4
,5
J3 ,4
ꢀ
ꢀ
5.3, H-3ꢀ), 5.26 (1 H, d, J1ꢀꢀ ꢀꢀ 3.5, H-1ꢀꢀ), 5.30 (1 H, m, H-2ꢀ),
,2
6.16 (1 H, d, J1 ,2
7.4, H-1ꢀ), 8.01 (1 H, s, H-2); dC(150.8 MHz;
ꢀ
ꢀ
D2O) 60.41 (C-6ꢀꢀ), 62.00 (C-5ꢀ), 71.32 (C-2ꢀꢀ), 72.16 (C-4ꢀꢀ) 72.30
(C-5ꢀꢀ), 73.67 (C-3ꢀ), 74.37 (C-2ꢀ with C–P coupling), 77.187 (C-
3ꢀꢀ with C–P coupling), 85.56 (C-4ꢀ), 89.46 (C-1ꢀ), 98.12 (C-1ꢀꢀ),
119.89 (C-5), 128.86 (C-8), 149.75 (C-4), 152.39 (C-2), 154.68
1
CDCl3; H decoupled) −0.13, −0.86, −0.01 (3 s); m/z (FAB)
1480.4 [(M + H)+, 90%]; mass calcd for C79H81N5O18P3 (M +
H)+, 1480.47895; found 1480.47537.
3ꢀ-O-a-D-Glucopyranosyl adenosine 2ꢀ,3ꢀꢀ,4ꢀꢀ-trisphosphate
(adenophostin A) (2). A mixture of 8 (256 mg, 0.17 mmol)
and moist 20% Pd(OH)2 on carbon (ca. 300 mg) in methanol
(10.5 cm3), cyclohexene (5.5 cm3) and milliQ water (0.75 cm3)
1
(C-6); dP(161.8 MHz; D2O; H decoupled) 3.67 and 2.54 (2 ×
brs integrating as 1 : 2 respectively); m/z (FAB) 746.0, 748.0
[(M–H)−, 45%]; mass calcd for C16H2479BrN5O18P3 (M–H)−,
745.95126 and C16H2481BrN5O18P3 (M–H)−, 747.94922; found
745.94998 and 747.94975.
◦
was heated at 80 C for 4 h. The mixture was passed through
a membrane filter to remove the catalyst washing well with
MeOH and water. The filtrate was concentrated under reduced
pressure with the resulting residue being purified on an MP1 AG
ion-exchange column eluting with 0–100% 150 mM TFA. The
relevant fractions (elution between 55–85%) were concentrated
to give adenophostin A 2 (105 mg, 90%) as the free acid.
dH(270 MHz; D2O) 3.59–3.77 (6 H, m, H-2ꢀꢀ, H-5ꢀꢀ, H-5ꢀA,
H-5ꢀB, H-6ꢀꢀA, H-6ꢀꢀ ), 3.99 (1 H, q, J3ꢀꢀ ꢀꢀ = J4ꢀꢀ ꢀꢀ 9.5, H-4ꢀꢀ), 4.28
Acknowledgements
We thank the Wellcome Trust for Programme Grant Support
(060554 to B.V.L.P. and 039662 to C.W.T.). We also thank Mr
James J. Robinson for useful discussions on molecular modelling
and Dr Andrew M. Riley, University of Bath, UK, for his
invaluable advice on all aspects of this work.
B
,4
,5
(1 H, m, J3 ,4
ꢀ
ꢀ
3.3, H-4ꢀ), 4.39 (1 H, q, J2ꢀꢀ ꢀꢀ = J3ꢀꢀ ꢀꢀ 9.5, H-3ꢀꢀ) 4.50
,3
,4
(1 H, m, H-3ꢀ), 5.13 (1 H, d, J = 3.7 Hz, H-1ꢀꢀ), 5.16 (1 H, m,
References
H-2ꢀ), 6.20 (1 H, d, J1 ,2 6.2, H-1ꢀ), 8.25, 8.35 (2 H, 2 s, H-8,
ꢀ
ꢀ
H-2); dC(150.8 MHz; D2O) 60.25 (C-6ꢀꢀ), 61.10 (C-5ꢀ), 70.50
(C-2ꢀꢀ), 71.61 (C-5ꢀꢀ), 73.13 (C-4ꢀꢀ), 73.99 (C-3ꢀ), 75.94 (C-2ꢀ with
C–P coupling), 78.14 (C-3ꢀꢀ with C–P coupling), 84.56 (C-4ꢀ),
87.24 (C-1ꢀ), 98.30 (C-1ꢀꢀ), 119.08 (C-5), 143.50 (C-8), 144.62
(C-2), 148.39 (C-4), 150.03 (C-6); dP(161.8 MHz; D2O; 1H
decoupled) 0.25, 0.81, 1.17 (3 s); m/z (FAB) 668.1 [(M–H)−,
100%]; mass calcd for C16H27N5O18P3 (M + H)+, 670.05585;
found 670.05635.
1 M. J. Berridge, Nature, 1993, 361, 315–325.
2 M. J. Berridge, M. D. Bootman and P. Lipp, Nature, 1998, 395, 645–
648.
3 B. V. L. Potter and D. Lampe, Angew. Chem., Int. Ed. Engl., 1995,
34, 1933–1972.
4 A. M. Riley, A. J. Laude, C. W. Taylor and B. V. L. Potter,
Bioconjugate Chem., 2004, 15, 278–289.
5 M. Takahashi, T. Kagasaki, T. Hosoya and S. Takahashi, J. Antibiot.,
1993, 46, 1643–1647.
6 M. Takahashi, K. Tanzawa and S. Takahashi, J. Biol. Chem., 1994,
269, 369–372.
N-2,3-Etheno-3ꢀ-O-a-D-glucopyranosyl adenosine 2ꢀ, 3ꢀꢀ,4ꢀꢀ-tris-
phosphate (4). To a solution of 2 (11 mg, 16.4 lmol) in 50% aq.
chloroacetaldehyde (1 cm3) was added NaOAc until pH 4–4.5
was attained. The solution was stirred at 37 ◦C for 48 h and was
washed with ethyl acetate (3 × 25 cm3) and the aqueous layer was
concentrated under reduced pressure. Purification using an MP1
AG ion-exchange column eluting with 0–100% 150 mM TFA
(elution between 40–70%) gave the desired compound 4 (4.7 mg,
43%). Fluorescence (pH 7) (excitation) 296 nm, (emission)
412 nm; UV (H2O)/nm kmax 220 and 272; dH(270 MHz; D2O)
7 S. Takahashi, T. Kinoshita and M. Takahashi, J. Antibiot., 1994, 47,
95–100.
8 V. Correa, A. M. Riley, S. Shuto, G. Horne, E. P. Nerou, R. D.
Marwood, B. V. L. Potter and C. W. Taylor, Mol. Pharmacol., 2001,
59, 1206–1215.
9 S. Shuto, K. Tatani, Y. Ueno and A. Matsuda, J. Org. Chem., 1998,
63, 8815–8824.
10 R. D. Marwood, S. Shuto, D. J. Jenkins and B. V. L. Potter, Chem.
Commun., 2000, 219–220.
11 J. Hirota, T. Michikawa, A. Miyawaki, M. Takahashi, K. Tanzawa,
I. Okura, T. Furuichi and K. Mikoshiba, FEBS Lett., 1995, 368,
248–252.
12 L. Missiaen, J. B. Parys, I. Sienaert, K. Maes, K. Kunzelmann, M.
Takahashi, K. Tanzawa and H. De Smedt, J. Biol. Chem., 1998, 273,
8983–8986.
13 S. A. Morris, E. P. Nerou, A. M. Riley, B. V. L. Potter and C. W.
Taylor, Biochem. J., 2002, 367, 113–120.
14 R. D. Marwood, A. M. Riley, V. Correa, C. W. Taylor and B. V. L.
Potter, Bioorg. Med. Chem. Lett., 1999, 9, 453–458.
15 R. D. Marwood, D. J. Jenkins, V. Correa, C. W. Taylor and B. V. L.
Potter, J. Med. Chem., 2000, 43, 4278–4287.
3.68–3.94 (6 H, m, H-2ꢀꢀ, H-5ꢀꢀ, H-5ꢀA, H-5ꢀB, H-6ꢀꢀA, H-6ꢀꢀ ), 4.11
B
(1 H, q, J3ꢀꢀ ꢀꢀ = J4ꢀꢀ ꢀꢀ 9.1, H-4ꢀꢀ), 4.43 (1 H, m, H-4ꢀ), 4.50 (1 H,
,4
,5
q, J2ꢀꢀ ꢀꢀ = J3ꢀꢀ ꢀꢀ 9.1, H-3ꢀꢀ) 4.67 (1 H, m, J3 ,4
ꢀ
ꢀ
3.3, H-3ꢀ), 5.24 (1
,3
,4
H, d, J1ꢀꢀ ꢀꢀ 3.2, H-1ꢀꢀ), 5.39 (1 H, m, H-2ꢀ), 6.48 (1 H, d, J1 ,2
5.7,
ꢀ
ꢀ
,2
H-1ꢀ), 8.22, 8.87 (2 H, 2 d, J10,11 2.2, H-10, H-11), 8.68, 9.35 (2 H,
2 s, H-8, H-2); dC(100.5 MHz; D2O) 60.27 (C-6ꢀꢀ), 61.07 (C-5ꢀ),
70.60 (C-2ꢀꢀ), 71.70 (C-5ꢀꢀ), 72.92 (C-4ꢀꢀ), 73.83 (C-3ꢀ), 75.59 (C-
2ꢀ with C–P coupling), 77.88 (C-3ꢀꢀ with C–P coupling), 84.40
(C-4ꢀ), 87.67 (C-1ꢀ), 98.15 (C-1ꢀꢀ), 114.38 (C-10). 119.08 (C-5),
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 2 4 5 – 2 5 2
2 5 1