ORGANIC
LETTERS
2013
Vol. 15, No. 22
5846–5849
Divergent Total Syntheses of
(ꢀ)-Lycopladine D, (þ)-Fawcettidine,
and (þ)-Lycoposerramine Q
Chen Zeng, Changwu Zheng, Jingyun Zhao, and Gang Zhao*
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road,
Shanghai 200032, China
Received October 8, 2013
ABSTRACT
Enantioselective total syntheses of (þ)-fawcettidine and (þ)-lycoposerramine Q as well as the first total synthesis of (ꢀ)-lycopladine D from a
common intermediate have been accomplished by a divergent path. The common intermediate was derived from a HajosꢀParrish-like diketone by
a stereoselective Birch reduction and a Suzuki coupling. The synthesis of (ꢀ)-lycopladine D featured an allylic oxidation and a biomimetic
aminoketalization while the route to (þ)-fawcettidine and (þ)-lycoposerramine Q highlighted an oxidative rearrangement.
Since the first Lycopodium alkaloid lycopodine was
€
isolated and classified into four major groups to date.2
Members of this family are known to have cardiovascular
and neuromusculareffects.3 The uniquepolyfused/bridged
system and impressive biological activities of these com-
poundshavearousedgreat interestfrom syntheticchemists
in recent decades.4 One of the classes in the family named
fawcettimine-type Lycopodium alkaloids (Figure 1), which
usuallyfeature a tetracyclic skeleton including aR-oriented
methyl group at C-15 and account for nearly one-third of the
members, has particularly attracted the attention of several
groups in total synthesis. As the selected examples shown in
Figure 1, recently, several impressive total syntheses toward
fawcettidine (1),5 lycojapodine A,6 lycoflexine,7 huperzine
Q,8 and lycoposerramine Q (2)9 have been achieved.
separated by Bodeker in 1881 from clubmoss Lycopodium
complanatum,1 over 200 lycopodium alkaloids have been
€
(1) Bodeker, K. Justus Liebigs Ann. Chem. 1881, 208, 363.
(2) For recent reviews on Lycopodium alkaloids, see: (a) Ma, X.;
Gang, D.-R. Nat. Prod. Rep. 2004, 21, 752. (b) Hirasawa, Y.;Kobayashi, J.;
Morita, H. Heterocycles 2009, 77, 679. (c) Siengalewicz, P.; Mulzer, J.;
€
Rinner, U. In The Alkaloids; Knolker, H.-J., Ed.; Academic Press: New York,
2013; Vol. 72, pp 1ꢀ151.
(3) (a) Tang, X.-C.; Han, Y.-F.; Chen, X.-P.; Zhu, X.-D. Acta
Pharmacol. Sin. 1986, 7, 507. (b) Hirasawa, Y.; Morita, H.; Kobayashi,
J. Org. Lett. 2004, 6, 3389.
(4) For recent reports on the total syntheses of fawcettimine-class
Lycopodium alkaloids, see: (a) Linghu, X.; Kennedy-Smith, J. J.; Toste,
F. D. Angew. Chem., Int. Ed. 2007, 46, 7671. (b) Kozak, J. A.; Dake,
G. R. Angew. Chem., Int. Ed. 2008, 47, 4221. (c) Otsuka, Y.; Inagaki, F.;
Mukai, C. J. Org. Chem. 2010, 75, 3420. (d) Canham, S. M.; France,
D. J.; Overman, L. E. J. Am. Chem. Soc. 2010, 132, 7876. (e) Ramharter,
J.; Weinstabl, H.; Mulzer, J. J. Am. Chem. Soc. 2010, 132, 14338. (f)
Yang, Y.-R.; Shen, L.; Huang, J.-Z.; Xu, T.; Wei, K. J. Org. Chem. 2011,
76, 3684. (g) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H.
Angew. Chem., Int. Ed. 2011, 50, 8025. (h) Zhang, X.-M.; Tu, Y.-Q.;
Zhang, F.-M.; Shao, H.; Meng, X. Angew. Chem., Int. Ed. 2011, 50,
3916. (i) Li, H.-H.; Wang, X.-M.; Lei, X.-G. Angew. Chem., Int. Ed.
2012, 51, 491. (j) Ge, H.-M.; Zhang, L.-D.; Tan, R.-X.; Yao, Z.-J. J. Am.
Chem. Soc. 2012, 134, 12323. (k) Pan, G.-J.; Williams, R. M. J. Org.
Chem. 2012, 77, 4801. (l) Shimada, N.; Abe, Y.; Yokoshima, S.;
Fukuyama, T. Angew. Chem., Int. Ed. 2012, 51, 11824. (m) Li, H.-H.;
Wang, X.-M.; Hong, B.-K.; Lei, X.-G. J. Org. Chem. 2013, 78, 800. (n)
Itoh, N.; Iwata, T.; Sugihara, H.; Inagaki, F.; Mukai, C. Chem.;Eur. J.
2013, 19, 8665. (o) Zaimoku, H.; Nishide, H.; Nishibata, A.; Goto, N.;
Taniguchi, T.; Ishibashi, H. Org. Lett. 2013, 15, 2140.
Meanwhile, many new fawcettimine-type Lycopodium
alkaloids with more diverse and novel architectures have
(5) For isolation, see: Burnell, R. H. J. Chem. Soc. 1959, 3091. For
total syntheses, see refs 4b, 4i, 4k, and 4n.
(6) For isolation, see: He, J.; Chen, X.-Q.; Li, M.-M.; Zhao, Y.; Xu,
G.; Cheng, X.; Peng, L.-Y.; Xie, M.-J.; Zheng, Y.-T.; Wang, Y.-P.;
Zhao, Q.-S. Org. Lett. 2009, 11, 1397. For total synthesis, see ref 4m.
(7) For isolation, see: Ayer, W. A.; Fukazawa, Y.; Singer, P. P.
Tetrahedron Lett. 1973, 14, 5045. For total syntheses, see refs 4e, 4f, 4k,
and 4n.
(8) For isolation, see: Tan, C.-H.; Ma, X.-Q.; Chen, G.-F.; Zhu,
D.-Y. Helv. Chim. Acta 2002, 85, 1058. For total synthesis, see ref 4g.
r
10.1021/ol402906y
Published on Web 11/04/2013
2013 American Chemical Society