4
42 Biochemistry, Vol. 50, No. 4, 2011
Demick and Lanzilotta
decarboxylase activase based on mutagenesis results (25). The
electron donor for the GD-AE is most likely a low-potential
ferredoxin. This is in contrast to PFL-AE for which it has been
shown that electrons for PFL-AE are provided by reduced
flavodoxin (8). While the source of the low-potential electron
required for reductive cleavage of AdoMet may seem like a minor
point, this may lead to a different structural arrangement in the
active site. Moreover, it is not known whether other AdoMet
radical activating enzymes containing the additional ferredoxin-
like [4Fe-4S] cluster binding domains also work by reductive
cleavage of AdoMet to yield MTA. In any case, our findings
provide evidence for an exciting new hypothesis, specifically
that, in contrast to the current paradigm, radical SAM activases
containing additional Fe-S clusters may operate by a different
reductive cleavage mechanism. At present, PFL-AE is the only
structure available for any radical SAM activase. A structure of a
radical SAM activase with the additional ferredoxin-like [4Fe-4S]
cluster binding domains will certainly provide some insight into
the atomic details of AdoMet binding, but additional parameters
such as the kinetics and thermodynamics of electron transfer and
the reductive cleavage event must also be investigated. Whether
one reductive cleavage mechanism is chosen over the other
and the occurrence of the additional Fe-S cluster-containing
domains in radical SAM activases throughout Nature are likely
to have important evolutionary implications. For example, one
might inquire about whether PFL-AE is truly a model enzyme for
all radical SAM activases or whether PFL-AE is actually an
exception to the rule.
REFERENCES
1. Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., and
Miller, N. E. (2001) Nucleic Acids Res. 29, 1097–1106.
2
3
. Cheek, J., and Broderick, J. B. (2001) J. Biol. Inorg. Chem. 6, 209–226.
. Frey, P. A., Hegeman, A. D., and Ruzicka, F. J. (2008) Crit. Rev.
Biochem. Mol. Biol. 43, 63–88.
4. Gambarelli, S., Luttringer, F., Padovani, D., Mulliez, E., and
Fontecave, M. (2005) ChemBioChem 6, 1960–1962.
5. Frey, M., Rothe, M., Wagner, A. F., and Knappe, J. (1994) J. Biol.
Chem. 269, 12432–12437.
6. Parast, C. V., Wong, K. K., Lewisch, S. A., Kozarich, J. W., Peisach,
J., and Magliozzo, R. S. (1995) Biochemistry 34, 2393–2399.
7
. Reddy, S. G., Wong, K. K., Parast, C. V., Peisach, J., Magliozzo,
R. S., and Kozarich, J. W. (1998) Biochemistry 37, 558–563.
. Sawers, G., and Watson, G. (1998) Mol. Microbiol. 29, 945–954.
8
9. Becker, A., Fritz-Wolf, K., Kabsch, W., Knappe, J., Schultz, S., and
Volker Wagner, A. F. (1999) Nat. Struct. Biol. 6, 969–975.
1
1
0. Knappe, J., and Wagner, A. F. (2001) Adv. Protein Chem. 58, 277–315.
1. Krebs, C., Broderick, W. E., Henshaw, T. F., Broderick, J. B., and
Huynh, B. H. (2002) J. Am. Chem. Soc. 124, 912–913.
12. Walsby, C. J., Hong, W., Broderick, W. E., Cheek, J., Ortillo, D.,
Broderick, J. B., and Hoffman, B. M. (2002) J. Am. Chem. Soc. 124,
3143–3151.
1
1
1
1
1
3. Walsby, C. J., Ortillo, D., Broderick, W. E., Broderick, J. B., and
Hoffman, B. M. (2002) J. Am. Chem. Soc. 124, 11270–11271.
4. Gelius-Dietrich, G., and Henze, K. (2004) J. Eukaryotic Microbiol.
51, 456–463.
5. Lehtio, L., and Goldman, A. (2004) Protein Eng., Des. Sel. 17, 545–
552.
6. Buis, J. M., and Broderick, J. B. (2005) Arch. Biochem. Biophys. 433,
288–296.
7. Walsby, C. J., Ortillo, D., Yang, J., Nnyepi, M. R., Broderick, W. E.,
Hoffman, B. M., and Broderick, J. B. (2005) Inorg. Chem. 44, 727–
741.
1
1
2
2
2
8. Peng, Y., Veneziano, S. E., Gillispie, G. D., and Broderick, J. B. (2010)
J. Biol. Chem. 285, 27224–27231.
9. O’Brien, J. R., Raynaud, C., Croux, C., Girbal, L., Soucaille, P., and
Lanzilotta, W. N. (2004) Biochemistry 43, 4635–4645.
0. Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, C., and
Soucaille, P. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 5010–5015.
1. Nicolet, Y., Amara, P., Mouesca, J. M., and Fontecilla-Camps, J. C.
ACKNOWLEDGMENT
We thank Dr. Lance Wells and Robert L. Bridger for per-
forming the MS analysis; they are funded in part by an equipment
grant from the Georgia Research Alliance to Dr. Wells. We also
thank Dr. Jeff Urbauer for critical review.
(2009) Proc. Natl. Acad. Sci. U.S.A. 106, 14867–14871.
2. Broderick, J. B. (2010) Nature 465, 877–878.
23. Zhang, Y., Zhu, X., Torelli, A. T., Lee, M., Dzikovski, B.,
Koralewski, R. M., Wang, E., Freed, J., Krebs, C., Ealick, S. E.,
and Lin, H. (2010) Nature 465, 891–896.
SUPPORTING INFORMATION AVAILABLE
24. Leuthner, B., Leutwein, C., Schulz, H., Horth, P., Haehnel, W.,
Schiltz, E., Schagger, H., and Heider, J. (1998) Mol. Microbiol. 28,
Materials and detailed experimental procedures as well as
additional HPLC and mass spectroscopy data. This material is
available free of charge via the Internet at http://pubs.acs.org.
615–628.
25. Yu, L., Blaser, M., Andrei, P. I., Pierik, A. J., and Selmer, T. (2006)
Biochemistry 45, 9584–9592.