PleaseC dh oe mn oi ct a al dS cj ui es nt cme argins
Page 4 of 6
ARTICLE
Journal Name
also prepared 1,4-diphenylbutane-1,4-dione (9); however, no
desired product (3ba) was obtained when this 1,4-dione was
subjected to the standard reaction conditions (Scheme 4f).
Finally, the intramolecular competitive reactions of
unsymmetrical 1,3-diones (1s) or (1t) with (2a) indicated that
the chemoselectivity of this reaction was affected by the
electron density of aryl-group, and the C–C bond cleavage tend
to occur at the less electron-rich moieties (Scheme 4g and 4h).
The electron-deficient carbonyls are more likely to be attacked
Acknowledgements
DOI: 10.1039/C9SC03245B
This work was supported by the NSF of China (21672075), the
Program for New Century Excellent Talents in Fujian Province
University, and the Instrumental Analysis Center of Huaqiao
University.
Notes and references
1
For selected reviews, see: (a) B. Rybtchinski and D. Milstein,
Angew. Chem. Int. Ed., 1999, 38, 870; (b) C.-H. Jun, Chem.
Soc. Rev., 2004, 33, 610; (c) M. Murakami and T. Matsuda,
Chem. Commun., 2011, 47, 1100; (d) M. A. Drahl, M.
Manpadi and L. J. Williams, Angew. Chem. Int. Ed., 2013, 52,
2
by a nucleophile, such as H O, which may induce the
subsequent C–C bond cleavage.
On the basis of these results, we proposed that the reaction
would proceed as showed in the Scheme 5. The
transformation begins with the generation of Ru complex (A)
under basic condition, which is subsequently captured by
sulfoxonium ylide to form Ru carbene complex (B). Then, the
1
1
1
1222; (e) F. Chen, T. Wang and N. Jiao, Chem. Rev., 2014,
14, 8613; (f) T. Wang and N. Jiao, Acc. Chem. Res., 2014, 47,
137; (g) P.-h. Chen, B. A. Billett, T. Tsukamoto and G. Dong,
ACS Catal., 2017, 7, 1340; (h) P. Sivaguru, Z. Wang, G. Zanoni
and X. Bi, Chem. Soc. Rev., 2019, 48, 2615. For selected
examples, see: (i) M. Gozin, A. Weisman, Y. Bendavid and D.
Milstein, Nature, 1993, 364, 699; (j) J. Zhu, J. Wang and G.
Dong, Nat. Chem., 2019, 11, 45.
C−C bond activation occurs in the presence of H
complex (C). Migratory insertion of (C) affords intermediate
D). Finally, intramolecular annuation of (D) results in
2
O, giving Ru
(
intermediate (E), following by β-O elimination to finish the
furan products (3) and regenerate the Ru(II) catalyst.
2
(a) A. M. Dreis and C. J. Douglas, J. Am. Chem. Soc., 2009,
1
31, 412; (b) J. Wang, W. Chen, S. Zuo, L. Liu, X. Zhang and J.
Wang, Angew. Chem. Int. Ed., 2012, 51, 12334; (c) Z.-Q. Lei,
H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, J. Sun and Z.-J. Shi,
Angew. Chem. Int. Ed., 2012, 51, 2690; (d) Y. Xia, G. Lu, P. Liu
and G. Dong, Nature, 2016, 539, 546; (e) D.-S. Kim, W.-J. Park
and C.-H. Jun, Chem. Rev., 2017, 117, 8977; (f) Y. Xia, J. Wang
and G. Dong, J. Am. Chem. Soc., 2018, 140, 5347; (g) T.-T.
Zhao, W.-H. Xu, Z.-J. Zheng, P.-F. Xu and H. Wei, J. Am. Chem.
Soc., 2018, 140, 586.
(a) L. Souillart and N. Cramer, Chem. Rev., 2015, 115, 9410;
(b) G. Fumagalli, S. Stanton and J. F. Bower, Chem. Rev.,
2017, 117, 9404; (c) L. Deng, M. Chen and G. Dong, J. Am.
Chem. Soc., 2018, 140, 9652.
R4
O
O
R1
HBase
R2
+
H O
R1
R3
2
1
O
3
RuII
HBase
+
O
Base
4
R Ru
OH
R3
Ru
O
R1
ligands on Ru were omitted
R2
R1
O
A
E
O
O
S
3
R3
R4
2
DMSO
4
5
Y. Xu, X. Qi, P. Zheng, C. C. Berti, P. Liu and G. Dong, Nature,
2019, 567, 373.
O
O
R1
Ru
R4
Ru
R1
R3
O
O
R4
R3
For examples on transition metal-catalyzed oxidative
cleavage of unstrained C–C(CO) bonds, see: (a) L. Zhang, X.
Bi, X. Guan, X. Li, Q. Liu, B.-D. Barry and P. Liao, Angew.
Chem. Int. Ed., 2013, 52, 11303; (b) X. Huang, X. Li, M. Zou, S.
Song, C. Tang, Y. Yuan and N. Jiao, J. Am. Chem. Soc., 2014,
R2
O
D
B
H2O
O
O
Ru
2
R1
R3
R CO2H
C
R4
1
36, 14858; (c) A. Maji, S. Rana, Akanksha and D. Maiti,
Angew. Chem. Int. Ed., 2014, 53, 2428; (d) C. Tang and N.
Jiao, Angew. Chem. Int. Ed., 2014, 53, 6528; (e) N. Vodnala,
R. Gujjarappa, C. K. Hazra, D. Kaldhi, A. K. Kabi, U. Beifuss
and C. C. Malakar, Adv. Synth. Catal., 2019, 361, 135.
Scheme 5 Plausible catalytic cycle.
Conclusions
6
(a) C. Zhang, P. Feng and N. Jiao, J. Am. Chem. Soc., 2013,
1
35, 15257; (b) L.-H. Zou, D. L. Priebbenow, L. Wang, J.
In conclusion, we have demonstrated the first example of
Ru(II)-catalyzed chemoselective deacylative annulation of 1,3-
diones with sulfoxonium ylides. A series of substituted furans
have been synthesized in reasonable yields from this novel
method. This protocol that use of unstrained C−C(CO) bond as
nucleophiles in transition metal-catalyzed cross couplings
should be expected to find wide implications. More work to
better understand the mechanistic information of this strategy
is currently underway
Mottweiler and C. Bolm, Adv. Synth. Catal., 2013, 355, 2558;
c) L. Li, W. Huang, L. Chen, J. Dong, X. Ma and Y. Peng,
(
Angew. Chem. Int. Ed., 2017, 56, 10539; (d) Q. Wu, Y. Li, C.
Wang, J. Zhang, M. Huang, J. K. Kim and Y. Wu, Org. Chem.
Front., 2018, 5, 2496.
7
8
C. He, S. Guo, L. Huang and A. Lei, J. Am. Chem. Soc., 2010,
1
32, 8273.
(a) G. Cheng, X. Zeng, J. Shen, X. Wang and X. Cui, Angew.
Chem. Int. Ed., 2013, 52, 13265; (b) X. Yang, G. Cheng, J.
Shen, C. Kuai and X. Cui, Org. Chem. Front., 2015, 2, 366; (c)
G. Cheng, W. Lv, C. Kuai, S. Wen and S. Xiao, Chem.
Commun., 2018, 54, 1726; (d) G. Cheng, W. Lv and L. Xue,
Green Chem., 2018, 20, 4414; (e) B. Ge, W. Lv, J. Yu, S. Xiao
and G. Cheng, Org. Chem. Front., 2018, 5, 3103.
Conflicts of interest
There are no conflicts to declare.
9
For selected examples on furan synthesis, see: (a) R. C. D.
Brown, Angew. Chem. Int. Ed., 2005, 44, 850; (b) S. F. Kirsch,
Org. Biomol. Chem., 2006, 4, 2076; (c) A. V. Gulevich, A. S.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins