Organic Process Research & Development 2002, 6, 533−538
Nonproteinogenic r-Amino Acid Preparation Using Equilibrium Shifted
Transamination
†
‡
Tao Li, Anna B. Kootstra, and Ian G. Fotheringham*
Great Lakes Fine Chemicals, 601 East Kensington Rd, Mt. Prospect, Illinois 60056, U.S.A.
Abstract:
enzymatic bioprocesses to achieve the enantiospecific syn-
Microbial r-transaminases such as tyrosine aminotransferase
thesis of this family of compounds. These bioprocesses
include kinetic and dynamic kinetic resolution of race-
(
TAT) and branched chain aminotransferase (BCAT) of Es-
cherichia coli, are useful as industrial biocatalysts to prepare
nonproteinogenic -amino acids from r-keto acids and an amino
donor. However, they typically yield only 50% product when
-glutamic acid, the preferred amino donor, is used due to
7
,19
4,9,28
mates
and enantio-specific syntheses.
Amongst the
L
latter, aminotransferases have been extensively studied in
the large-scale preparation of nonproteinogenic L- or D-R-
1
,9,25
L
amino acids
as these enzymes typically display many
accumulated 2-ketoglutaric acid. Accordingly, methods have
been sought to increase the reaction yield by the recycle or
removal of the keto acid by-product. In this report, we have
investigated the biocatalytic coupling of δ-transamination with
r-transamination to recycle 2-ketoglutaric acid, and thereby
increase the yield of aminotransferase reaction products.
Ornithine δ-aminotransferase (OAT) catalyses the reversible
desirable features of industrial biocatalysts, including high
turnover, relaxed substrate specificity, and no requirement
for external cofactor recycle.
(1) Ager, D. J.; Fotheringham, I. G.; Laneman, S. A.; Pantaleone, D. P.; Taylor,
P. P. Chim. Oggi 1997, 15, 11-14.
(
(
2) Bearne, S. L.; Wolfenden, R. Biochemistry 1995, 34, 11515-11520.
3) Bewley, M. C.; Lott, J. S.; Baker, E. N.; Patchett, M. L. FEBS Lett. 1996,
386, 215-218.
(
4) Bommarius, A. S.; Drauz, K.; Groeger, U.; Wandrey, C. Chirality Ind.
transfer of the δ-amino group of
acid forming -glutamic acid semialdehyde and
The cyclisation of
-glutamic acid semialdehyde to form ∆1-
pyrroline-5-carboxylate under physiological conditions, favours
the reaction in the direction of -glutamic acid formation. The
L
-ornithine to 2-ketoglutaric
1992, 371-397.
L
L-glutamic acid.
(
5) Borsuk, P.; Dzikowska, A.; Empel, J.; Grzelak, A.; Grzeskowiak, R.;
Weglenski, P. Acta Biochim. Pol. 1999, 46, 391-403.
L
(
(
6) Bradford, M. M. Anal. Biochem. 1976,72, 248-254.
7) Chibata, I.; Tosa, T.; Shibatani, T. Chirality Ind. 1992, 351-370.
L
(8) Transaminases; Christen, P., Metzler, D. E., Eds.; Wiley: New York, 1985.
(
9) Crump, S. P.; Rozzell, J. D. Biocatalytic Production of Amino Acids by
Transamination. In Biocatalytic Production of Amino Acids and DeriVatiVes;
Rozzell, J. D., Wagner, F., Eds.; Wiley: New York, 1992; pp 43-58.
Bacillus subtilis rocD gene encoding OAT was cloned and
produced at high levels in E. coli. Combined cell extracts of
separate E. coli strains overproducing OAT and E. coli tyrosine
(10) Cunin, R.; Glandsorff, N.; Pierard, A.; Stalon, V. Microbiol. ReV. 1986,
0, 314-352.
5
aminotransferase enabled the synthesis of
from 2-ketobutyric acid to reach a yield of 92% compared to
0% achievable by TAT alone. Similarly, combined extracts
of strains overproducing OAT and E. coli branched-chain
amino acid aminotransferase synthesised -tert-leucine from
L-2-aminobutyrate
(
(
(
11) Dzikowska, A.; Swianiewicz, M.; Talarczyk, A.; Wisniewska, M.; Goras,
M.; Scazzocchio, C.; Weglenski, P. Curr. Genet. 1999, 35, 118-126.
12) Fotheringham, I. G.; Bledig, S. A.; Taylor, P. P. J. Bacteriol. 1998, 180,
5
4319-4323.
13) Fotheringham, I. G.; Dacey, S. A.; Taylor, P. P.; Smith, T. J.; Hunter, M.
G.; Finlay, M. E.; Primrose, S. B.; Parker, D. M.; Edwards, R. M. B. Journal
L
1986, 234, 593-604.
trimethylpyruvic acid with a 73% yield compared to 31% with
BCAT alone. The use of OAT as a general biocatalytic tool to
achieve high yields in aminotransferase reactions is discussed.
(
(
(
14) Fotheringham, I. G.; Grinter, N.; Pantaleone, D. P.; Senkpeil, R. F.; Taylor,
P. P. Bioorg. Med. Chem. 1999, 7, 2209-2213.
15) Gardan, R.; Rapoport, G.; Debarbouille, M. J. Mol. Biol. 1995, 249, 843-
856.
16) Herrmann, K. M., Somerville, R. L., Eds. Amino Acids: Biosynthesis and
Genetic Regulation; Advanced Book Program; Addison Wesley: Reading,
MA, 1983.
(
17) Jhee, K.-H.; Yoshimura, T.; Esaki, N.; Yonaha, K.; Soda, K. J. Biochem.
Introduction
(Tokyo) 1995, 118, 101-108.
Nonproteinogenic amino acids are important intermediates
for a variety of pharmaceutical classes, most notably in
peptidomimetics with antiviral and oncological applications.
They are increasingly required at large scale and with high
enantiomeric purity as demand for single-enantiomer drugs
continues to grow. The stereoselectivity inherent in natural
biochemistry has prompted the development of a variety of
(18) Jones, B. N.; Paabo, S.; Stein, S. J. Liq. Chromatogr. 1981, 4, 565-586.
(
19) Kamphuis, J.; Boesten, W. H. J.; Kapten, B.; Hermes, H. F. M.; Sonke,
T.; Broxterman, Q. B.; Van Den Tweel, W. J. J.; Schoemaker, H. E.
Chirality Ind. 1992, 187-208.
(20) Kenklies, J.; Ziehn, R.; Fritsche, K.; Pich, A.; Andreesen, J. R. Microbiology
(
Reading, U.K.) 1999, 145, 819-826.
(
21) Laemmli, U. K. Nature 1970, 227, 680-685.
(22) Medina, V.; Pontarollo, R.; Glaeske, D.; Tabel, H.; Goldie, H. J. Bacteriol.
990, 172, 7151-7156.
23) Messenguy, F.; Vierendeels, F.; Scherens, B.; Dubois, E. J. Bacteriol. 2000,
82, 3158-3164.
1
(
1
*
Corresponding author: Ian G. Fotheringham, Department of Chemistry,
University of Edinburgh, King’s Buildings, West Mains Rd, Edinburgh EH9
JJ, UK. Telephone: 0131-650-7747. Fax: 0131-650-4743. E-mail:
(24) Miller, C. A.; Tucker, W. T.; Meacock, P. A.; Gustafsson, P.; Cohen, S.
N. Gene 1983, 24, 309-315.
(25) Pantaleone, D. P.; Geller, A. M.; Taylor, P. P. J. Mol. Catal. B: Enzym.
2001, 11, 795-803.
3
ian.fotheringham@ed.ac.uk.
†
Present address: Biotransformation, Schering Plough Research Institute,
(26) Remaut, E.; Stanssens, P.; Fiers, W. Gene 1981, 15, 81-93.
(27) Roosens, N. H. C. J.; Thu, T. T.; Iskandar, H. M.; Jacobs, M. Plant Physiol.
1998, 117, 263-271.
U-13-3000, 1011 Morris Ave., Union, NJ 07083.
‡
Present address: Albany Molecular Research, 601 East Kensington Rd.,
Mt. Prospect, IL 60056.
(28) Stirling, D. I. Chirality Ind. 1992, 209-222.
1
0.1021/op025518x CCC: $22.00 © 2002 American Chemical Society
Vol. 6, No. 4, 2002 / Organic Process Research & Development
•
533
Published on Web 05/21/2002