Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
Fig. 3 Fluorescence microscope images of alginate particles containing
SD-C1 based emulsion sensors stored in Milli-Q water for (a) 2 days and
(b) 8 days. 8 day old alginate particle in contact with (c) 10À2 M KCl and
(d) 10À2 M NaCl for one hour. Optical filter used: LP590. The number
below each image is the average fluorescence intensity of the 5 observed
particles.
1 P. Buhlmann, E. Pretsch and E. Bakker, Chem. Rev., 1998, 98, 1593.
2 K. Seiler and W. Simon, Sens. Actuators, B, 1992, 6, 295.
3 B. Awqatty, S. Samaddar, K. J. Cash, H. A. Clark and J. M. Dubach,
Analyst, 2014, 139, 5230.
4 J. M. Dubach, D. I. Harjes and H. A. Clark, Nano Lett., 2007, 7, 1827.
5 G. X. Rong, E. H. Kim, K. E. Poskanzer and H. A. Clark, Sci. Rep., 2017, 7, 1.
6 C. Y. Yang, Y. Qin, D. C. Jiang and H. Y. Chen, ACS Appl. Mater.
Interfaces, 2016, 8, 19892.
7 M. D. Kim, S. A. Dergunov, E. Lindner and E. Pinkhassik, Anal.
Chem., 2012, 84, 2695.
8 S. A. Dergunov, B. Miksa, B. Ganus, E. Lindner and E. Pinkhassik,
Chem. Commun., 2010, 46, 1485.
9 X. D. Wang, R. J. Meier and O. S. Wolfbeis, Angew. Chem., Int. Ed.,
2013, 52, 406.
10 J. Y. Han and K. Burgess, Chem. Rev., 2010, 110, 2709.
11 C. Reichardt, Chem. Rev., 1994, 94, 2319.
12 X. Xie, A. Gutierrez, V. Trofimov, I. Szilagyi, T. Soldati and E. Bakker,
Anal. Chem., 2015, 87, 9954.
13 X. Xie, I. Szilagyi, J. Zhai, L. Wang and E. Bakker, ACS Sens., 2016,
1, 516.
14 C. Krause, T. Werner, C. Huber and O. S. Wolfbeis, Anal. Chem.,
1999, 71, 5304.
15 O. S. Wolfbeis, Sens. Actuators, B, 1995, 29, 140.
16 I. Murkovic, A. Lobnik, G. J. Mohr and O. S. Wolfbeis, Anal. Chim.
Acta, 1996, 334, 125.
Milli-Q water and keeping them in the dark at room temperature.
Fluorescence recorded by the fluorescence probe is shown in
Fig. S4 (ESI†). All different formulations of alginate particles
exhibited similar behavior, so only the images and fluorescence
intensity values of the alginate particles containing SD-C1 based
emulsion are given here. Fig. 3a and b show that the fluores-
cence intensity is stable for at least 8 days. The alginate particles
were immersed after the 8 day period in 20 mL of 10À2 M KCl or
10À2 M NaCl solution for 1 h, see Fig. 3c and d. The response
and selectivity are still adequate after 8 days. The responses are
slightly different compared to the data in Fig. 2c, likely because
of the presence of residual Na+ and Ca2+ from the alginate
preparation that might contribute to the response. This pre- 17 L. Wang, X. Xie, J. Zhai and E. Bakker, Chem. Commun., 2016, 52, 14254.
18 L. Wang, S. Sadler, T. Cao, X. Xie, J. M. Von Filseck and E. Bakker,
Anal. Chem., 2019, 91, 8973.
19 M. Lerchi, E. Bakker, B. Rusterholz and W. Simon, Anal. Chem.,
liminary experiment suggests that emulsion particle sensors
may be encapsulated into alginate shells of micrometer size for
application in bioanalysis.
In this work, we successfully developed ion-selective sensors
with a tunable response range by structurally controlling the
1992, 64, 1534.
20 X. Xie and E. Bakker, Anal. Bioanal. Chem., 2015, 407, 3899.
21 X. Xie, J. Zhai and E. Bakker, Anal. Chem., 2014, 86, 2853.
22 M. Shortreed, E. Bakker and R. Kopelman, Anal. Chem., 1996, 68, 2656.
lipophilicity of the SD molecules. We synthesized SDs of 23 X. F. Du, C. Y. Zhu and X. Xie, Langmuir, 2017, 33, 5910.
24 Z. Szigeti, A. Malon, T. Vigassy, V. Csokai, A. Grun, K. Wygladacz,
different lipophilicity by modifying the molecule with alkyl or
PEG side chains. Emulsion sensors were prepared with these
N. Ye, C. Xu, V. J. Chebny, I. Bitter, R. Rathore, E. Bakker and
E. Pretsch, Anal. Chim. Acta, 2006, 572, 1.
SDs and other sensor components such as ion-exchanger, 25 X. Xie and E. Bakker, Anal. Chem., 2015, 87, 11587.
26 S. Fery-Forgues and D. Lavabre, J. Chem. Educ., 1999, 76, 1260.
27 A. T. R. Williams, S. A. Winfield and J. N. Miller, Analyst, 1983, 108, 1067.
28 O. Dinten, U. E. Spichiger, N. Chaniotakis, P. Gehrig, B. Rusterholz,
ionophore and plasticizer, with or without added polymer (PU
or PVC). The calibration curve was found to shift to higher
concentration with increasing lipophilicity of the SD. We also
found that the PU polymer-based emulsion sensors gave a larger
calibration curve shift and better repeatability than with the
other two matrices. The selectivity of the K+-selective sensors
over Na+ was found to decrease with increasing lipophilicity of
the SDs. Additionally, the sensors (PU-DOS) gave good long-term
W. E. Morf and W. Simon, Anal. Chem., 1991, 63, 596.
29 E. Bakker and E. Pretsch, Anal. Chim. Acta, 1995, 309, 7.
30 I. V. Tetko and V. Y. Tanchuk, J. Chem. Inf. Comput. Sci., 2002, 42, 1136.
31 L. Wang, X. Xie, T. Cao, J. Bosset and E. Bakker, Chem. – Eur. J., 2018,
24, 7921.
32 U. Oesch and W. Simon, Anal. Chem., 1980, 52, 692.
33 M. Cuartero, G. A. Crespo and E. Bakker, Anal. Chem., 2016, 88, 5649.
34 D. C. Darrow, N. Engl. J. Med., 1950, 242, 1014.
stability. No obvious dye leakage was found and they remained 35 J. Klein, J. Stock and K. D. Vorlop, Eur. J. Appl. Microbiol., 1983, 18, 86.
36 W. W. Stewart and H. E. Swaisgood, Enzyme Microb. Technol., 1993,
functional after 8 days. Encapsulated with the alginate gel,
these ion-selective emulsion sensors are potentially attractive
15, 922.
37 K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko,
for on-site, bioanalytical and imaging applications exhibiting a
tunable measurement range.
The authors thank the Swiss National Science Foundation
(SNF) and the University of Geneva for financial support.
K. H. Krause, D. Vignjevic, P. Nassoy and A. Roux, Lab Chip, 2016,
16, 1593.
38 M. T. Conconi, E. DeCarlo, S. Vigolo, C. Grandi, G. Bandoli,
N. Sicolo, G. Tamagno, P. P. Parnigotto and G. G. Nussdorfer, Horm.
Metab. Res., 2003, 35, 402.
12542 | Chem. Commun., 2019, 55, 12539--12542
This journal is ©The Royal Society of Chemistry 2019