38
RAHKAMAA-TOLONEN ET AL.
dissociated water with deuterium:
under H2-rich or stoichiometric conditions. Ammonia and
water were formed by stepwise hydrogenation of adsorbed
nitrogen and oxygen atoms, respectively, which was con-
firmed by isotopic transient experiments.
∗
∗
∗
ꢀ
ꢁ
H O + ∗
OH + H ,
[10]
[11]
[12]
2
OH∗ + D∗
HDO + ∗,
D O + H .
∗
ꢀ
ꢁ
HDO∗ + D∗
∗
∗
ꢀ
ꢁ
2
ACKNOWLEDGMENTS
❛
The second route is the stepwise one starting from atomi-
cally adsorbed oxygen:
This work is part of the activities at the Abo Akademi Process Chemistry
Group within the Finnish Centre of Excellence Programme (2000–2005)
of the Academy of Finland. Financial support from the Graduate School in
Chemical Engineering (GSCE) and the Academy of Finland is gratefully
acknowledged.
+D∗
+D∗
∗
∗
O∗
OD
D O .
[13]
ꢀ
ꢁ
ꢀ
ꢁ
2
−D∗
−D∗
Formation of ND3 is also thought to follow two routes. In
one hand, it can follow the H–D isotopic exchange in am-
monia when there is some NH∗3 or NH∗2 available (as shown
by separate experiments in part I):
REFERENCES
1. Glick, H. S., Klien, J. J., and Squire, W., Chem. Phys. 27, 850 (1957).
2. Iwamoto, M., and Hamada, H., Catal. Today 10, 57 (1991).
3. Iwamoto, M., and Yahiro, H., Catal. Today 22, 5 (1994).
4. Armor, J. N., Appl. Catal. B 1, 221 (1992).
5. Li, Y., and Armor, J. N., J. Catal. 150, 376 (1994).
6. Iwamoto, M., and Takeda, H., Catal. Today 27, 71 (1996).
7. Burch, R., Millington, P. J., and Walker, A. P., Appl. Catal. B 4, 64
(1994).
∗
∗
∗
ꢀ
ꢁ
NH + ∗
NH + H ,
[14]
[15]
[16]
[17]
[18]
[19]
[20]
3
2
NH∗2 + D∗
NH2D∗
NH D + ∗,
∗
ꢀ
ꢁ
2
ꢀ
ꢁ
NH D + ∗,
2
8. Lox, E. S. J., and Engler, B. H., in “Handbook of Heterogeneous Cata-
lysis” (G. Ertl, H. Kno¨zinger, and J. Weitkamp, Eds.), Vol. 4, p. 1559.
VCH, Weinheim, 1997.
∗
∗
NH2D∗ + D∗
NHD∗2
NHD + H ,
ꢀ
ꢁ
2
ꢀ
ꢁ
9. Shelef, M., and Graham, G. W., Catal. Rev.–Sci. Eng. 36, 433 (1994).
10. Taylor, K. C., Catal. Rev.–Sci. Eng. 35, 457 (1993).
11. Rahkamaa-Tolonen, K., Salmi, T., Murzin, D. Yu., Barreto-Dillon, L.,
Karhu, H., Keiski, R. L., and Va¨yrynen, J., J. Catal., in press.
12. Rahkamaa, K., Pulkkinen, U., Wa¨rna˚, J., Zhou, Y., Salmi, T., and
Keiski, R. L., in “Proceedings of the 14th International Congress
of Chemical and Process Engineering, Praha, August 2000,” Czech
Society of Chemical Engineering, Czech Republic, 2000.
13. Huang, S.-J., Walters, A. B., and Vannice, M. A., Appl. Catal. B 26, 101
(2000).
14. Valden, M., Keiski, R. L., Xiang, N., Pere, J., Aaltonen, J., Pessa, M.,
Maunula, T., Savima¨ki, A., Lahti, A., and Ha¨rko¨nen, M., J. Catal. 161,
614 (1996).
15. Falconer, J. L., and Schwarz, J. A., Catal. Rev.–Sci. Eng. 25, 141
(1983).
NHD + ∗,
2
NHD∗2 + D∗
ND∗3
ND + H ,
∗
∗
ꢀ
ꢁ
3
ꢀ
ꢁ
ND + ∗.
3
Another probable route is stepwise deuteration of ad-
sorbed nitrogen:
+D∗
−D∗
+D∗
−D∗
+D∗
−D∗
∗
∗
∗
3
N∗
ND
ND
ND .
[21]
ꢀ
ꢁ
ꢀ
ꢁ
ꢀ
ꢁ
2
Further kinetic studies are needed to quantify the relative
importance of these different routes.
16. Kijlstra, W. S., Brands, D. S., Poels, E. K., and Bliek, A., J. Catal. 171,
208 (1997).
17. Ciuparu, D., Bensalem, A., and Pfefferle, L., Appl. Catal. B 26, 241
(2000).
4. CONCLUSIONS
18. Farrauto, R. J., Hobson, M. C., Kennelly, T., and Waterman, E. M.,
Appl. Catal. A 81, 227 (1992).
19. Miyazaki, E., J. Catal. 65, 84 (1980).
20. Rahkamaa, K., Salmi, T., Keiski, R. L., Wa¨rna˚, J., and Zhou, Y., Chem.
Eng. Sci. 56, 1395 (2001).
21. Hirano, H., Yamada, T., Tanaka, K. I., Sierra, J., Cobden, P., and
Nieuwenhuys, B. E., Surf. Sci. 262, 97 (1992).
22. Arena, G. E., Bianchini, A., Centi, G., Vazzana, F., and Vitali, P., Stud.
Surf. Sci. Catal. 122, 109 (1999).
23. De Wolf, C. A., and Nieuwenhuys, B. E., Surf. Sci. 469, 196 (2000).
24. Hecker, W. C., and Bell, A. T., J. Catal. 92, 247 (1985).
25. Burch, R., and Watling, T. C., Catal. Lett. 37, 51 (1996).
26. Nieuwenhuys, B. E., Adv. Catal. 44, 249 (2000).
The reduction of NO with H2 and D2 was studied with
transient experiments on the Pd monolith. The experiments
showedthecomplexityofthedeuteratedproductformation
in the deuteration step and provided a possible means of
discriminating between different reaction mechanisms. Ni-
trogen, nitrous oxide, ammonia, and water were detected
as reaction products in NO reduction by hydrogen. The dis-
sociation of NO on the catalyst surface is the crucial step,
dominating the overall reaction behaviour. Ammonia for-
mation was favoured in excess H2. Under NO-rich con-
ditions the formation of N2O was essentially higher than