Journal of the American Chemical Society
Article
The aptamer-based BPA detection was found to be sequence-
specific; a scrambled aptamer sequence was tested, and no
signal decrease was observed upon BPA addition (Figure 5b).
Furthermore, exposure of the electrodes to bisphenol B, C, AF,
and G (BPB, BPC, BPAF, and BPG, each at 1 μM) confirmed
that the binding specificity of the aptamer sequence was
maintained upon surface attachment. As with cell adhesion, an
optimal surface coverage of DNA was found for BPA detection;
if DNA coverage was not at the optimal level, signal decrease
was significantly attenuated in the presence of BPA (starting
This electrochemically activated coupling method is ideal for
surface modification due to its ease of use, biocompatibility, and
reagentless surface activation. It also has a unique ability to
establish and quantify the level of DNA coverage, which was
found to be advantageous for multiple applications. The
efficiencies of both cell adhesion through DNA hybridization
and BPA detection by DNA aptamers were found to depend
greatly on the surface coverage of DNA, with individual
optimization necessary for each situation. We have optimized
surfaces for the binding of three nonadherent cell types: Jurkat
cells, Ramos cells, and S. cerevisiae. Additionally, especially low
concentrations of BPA were detected with our platform using
optimized DNA aptamer-modified electrodes. It is likely that
this convenient method will find use for many different
applications that require well-defined DNA monolayers on
conductive surfaces.
REFERENCES
■
(1) Chee, M.; Yang, R.; Hubbell, E.; Berno, A.; Huang, X. C.; Stern,
D.; Winkler, J.; Lockhart, D. J.; Morris, M. S.; Fodor, S. P. Science
1996, 274, 610.
(2) Lipshutz, R. J.; Fodor, S. P. A.; Gingeras, T. R.; Lockhart, D. J.
Nat. Genet. 1999, 21, 20.
(3) Lockhart, D. J.; Winzeler, E. A. Nature 2000, 405, 827.
(4) Hermann, T.; Patel, D. J. Science 2000, 287, 820−825.
(5) Breaker, R. R.; Joyce, G. F. Chem. Biol. 1994, 1, 223.
(6) Elbaz, J.; Lioubashevski, O.; Wang, F.; Remacle, F.; Levine, R. D.;
Willner, I. Nat. Nanotechnol. 2010, 5, 417.
(7) Rothemund, P. W. K. Nature 2006, 440, 297.
(8) Dietz, H.; Douglas, S. M.; Shih, W. M. Science 2009, 325, 725.
(9) Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F. Science 2008, 321,
1795.
(10) Chandra, R. A.; Douglas, E. S.; Mathies, R. A.; Bertozzi, C. R.;
Francis, M. B. Angew. Chem., Int. Ed. 2006, 45, 896.
(11) Douglas, E. S.; Chandra, R. A.; Bertozzi, C. R.; Mathies, R. A.;
Francis, M. B. Lab Chip 2007, 7, 1442.
(12) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J.
Nature 1996, 382, 607.
(13) Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.;
Loweth, C. J.; Bruchez, M. P.; Schultz, P. G. Nature 1996, 382, 609.
(14) Drummond, T. G.; Hill, M. G.; Barton, J. K. Nat. Biotechnol.
2003, 21, 1192.
(15) Herne, T. M.; Tarlov, M. J. J. Am. Chem. Soc. 1997, 119, 8916.
(16) Kelley, S. O.; Jackson, N. M.; Hill, M. G.; Barton, J. K. Angew.
Chem., Int. Ed. 1999, 38, 941.
(17) Furst, A. L.; Hill, M. G.; Barton, J. K. Langmuir 2013, 29, 16141.
(18) Soleymani, L.; Fang, Z.; Sargent, E. H.; Kelley, S. O. Nat.
Nanotechnol. 2009, 4, 844.
(19) Jin, R.; Wu, G.; Li, Z.; Mirkin, C. A.; Schatz, G. C. J. Am. Chem.
Soc. 2003, 125, 1643.
(20) Myers, B. D.; Lin, Q.-Y.; Wu, H.; Luijten, E.; Mirkin, C. A.;
Dravid, V. P. ACS Nano 2016, 10, 5679.
(21) Collman, J. P.; Devaraj, N. K.; Chidsey, C. E. D. Langmuir 2004,
Moreover, the oxidative coupling reactions themselves offer
proven compatibility with a very wide range of molecules,
including peptides, proteins, polymers, and nanoparticles, and
can proceed rapidly at very low concentrations. This generality
in other contexts suggests that the direct electrochemical
coupling method could be expanded to generate functional
monolayers with widely varying compositions and functions.
The continued efforts toward the exploration and expansion of
this new chemical technique are currently underway.
20, 1051.
(22) Devaraj, N. K.; Miller, G. P.; Ebina, W.; Kakaradov, B.; Collman,
J. P.; Kool, E. T.; Chidsey, C. E. D. J. Am. Chem. Soc. 2005, 127, 8600.
(23) Pheeney, C. G.; Barton, J. K. Langmuir 2012, 28, 7063.
(24) Furst, A. L.; Hill, M. G.; Barton, J. K. Langmuir 2015, 31, 6554.
(25) Yousaf, M. N.; Mrksich, M. J. Am. Chem. Soc. 1999, 121, 4286.
(26) Yousaf, M. N.; Chan, E. W. L.; Mrksich, M. Angew. Chem., Int.
Ed. 2000, 39, 1943.
(27) Mlcoch, J.; Steckhan, E. Tetrahedron Lett. 1987, 28, 1081.
(28) ElSohly, A. M.; Francis, M. B. Acc. Chem. Res. 2015, 48, 1971.
(29) Hooker, J. M.; Esser-Kahn, A. P.; Francis, M. B. J. Am. Chem.
Soc. 2006, 128, 15558.
(30) Behrens, C. R.; Hooker, J. M.; Obermeyer, A. C.; Romanini, D.
W.; Katz, E. M.; Francis, M. B. J. Am. Chem. Soc. 2011, 133, 16398.
(31) Obermeyer, A. C.; Jarman, J. B.; Netirojjanakul, C.; El
Muslemany, K.; Francis, M. B. Angew. Chem., Int. Ed. 2014, 53, 1057.
(32) Obermeyer, A. C.; Jarman, J. B.; Francis, M. B. J. Am. Chem. Soc.
2014, 136, 9572.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Methods and materials, cyclic voltammetry and electro-
chemical activation of catechol-modified electrodes,
optimization of aniline−DNA attachment to catechol
electrodes, images of cell-modified electrodes, optimiza-
tion of BPA detection, and current density for detection
of BPA using DNA aptamers (PDF)
AUTHOR INFORMATION
Corresponding Author
■
(33) Capehart, S. L.; ElSohly, A. M.; Obermeyer, A. C.; Francis, M. B.
Bioconjugate Chem. 2014, 25, 1888.
(34) Palla, K. S.; Hurlburt, T. J.; Buyanin, A. M.; Somorjai, G. A.;
Francis, M. B. J. Am. Chem. Soc. 2017, 139, 1967.
(35) El Muslemany, K. M.; Twite, A. A.; ElSohly, A. M.; Obermeyer,
A. C.; Mathies, R. A.; Francis, M. B. J. Am. Chem. Soc. 2014, 136,
12600.
(36) ElSohly, E. M.; MacDonald, J. I.; Hentzen, N. B.; Aanei, I. L.; El
Muslemany, K. M.; Francis, M. B. J. Am. Chem. Soc. 2017, 139, 3767.
(37) Chidsey, E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M. J.
Am. Chem. Soc. 1990, 112, 4301.
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by Agilent and the NSF (Grant CHE-
1413666). A.L.F. was supported by the A. O. Beckman
Postdoctoral Fellowship. M.J.S. was supported by NSF SAGE
IGERT program.
(38) Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M. J. Adhes. Sci.
Technol. 1992, 6, 1397.
(39) Ulman, A. Chem. Rev. 1996, 96, 1533.
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX