Journal of the American Chemical Society
Page 6 of 8
(
5) Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K.
M.; Handgraaf, H. J. M.; Vahrmeijer, A. L.; Frangioni, J. V.;
Choi, H. S. Structure-inherent targeting of near-infrared
fluorophores for parathyroid and thyroid gland imaging. Nat. Med.
2015, 21, 192.
(24) Choi Hak, S.; Nasr, K.; Alyabyev, S.; Feith, D.; Lee Jeong,
H.; Kim Soon, H.; Ashitate, Y.; Hyun, H.; Patonay, G.;
Strekowski, L.; Henary, M.; Frangioni John, V. Synthesis and In
Vivo Fate of Zwitterionic Near-Infrared Fluorophores. Angew.
Chem. Int. Edit. 2011, 50, 6258-6263.
(25) Owens Eric, A.; Lee, S.; Choi, J.; Henary, M.; Choi Hak,
S. NIR fluorescent small molecules for intraoperative imaging.
WiRes Nanomed. Nanobi. 2015, 7, 828-838.
(26) Owens, E. A.; Hyun, H.; Dost, T. L.; Lee, J. H.; Park, G.;
Pham, D. H.; Park, M. H.; Choi, H. S.; Henary, M. Near-Infrared
Illumination of Native Tissues for Image-Guided Surgery. J. Med.
Chem. 2016, 59, 5311-5323.
(27) Hyun, H.; Owens Eric, A.; Wada, H.; Levitz, A.; Park, G.;
Park Min, H.; Frangioni John, V.; Henary, M.; Choi Hak, S.
Cartilage-Specific Near-Infrared Fluorophores for Biomedical
Imaging. Angew. Chem. Int. Edit. 2015, 54, 8648-8652.
(28) Zhao, X.; Li, Y.; Jin, D.; Xing, Y.; Yan, X.; Chen, L. A
near-infrared multifunctional fluorescent probe with an inherent
tumor-targeting property for bioimaging. Chem. Commun. 2015,
51, 11721-11724.
(29) Hyun, H.; Wada, H.; Bao, K.; Gravier, J.; Yadav, Y.;
Laramie, M.; Henary, M.; Frangioni John, V.; Choi Hak, S.
Phosphonated Near-Infrared Fluorophores for Biomedical
Imaging of Bone. Angew. Chem. Int. Edit. 2014, 53, 10668-10672.
(30) Owens, E. A.; Hyun, H.; Tawney, J. G.; Choi, H. S.;
Henary, M. Correlating Molecular Character of NIR Imaging
Agents with Tissue-Specific Uptake. J. Med. Chem. 2015, 58,
4348-4356.
(31) Yang, T.; Liu, L.; Deng, Y.; Guo, Z.; Zhang, G.; Ge, Z.;
Ke, H.; Chen, H. Ultrastable Near-Infrared Conjugated-Polymer
Nanoparticles for Dually Photoactive Tumor Inhibition. Adv.
Mater. 2017, 29, 1700487.
(32) Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen
species generating systems meeting challenges of photodynamic
cancer therapy. Chem. Soc. Rev. 2016, 45, 6597-6626.
(33) Li, M.; Peng, X. Research Progress on the Phthalocyanine
Based Targeting Photosensitizers in Photodynamic Therapy.
Huaxue Xuebao 2016, 74, 959-968.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380.
(6) Li, X.; Lee, S.; Yoon, J. Supramolecular photosensitizers
rejuvenate photodynamic therapy. Chem. Soc. Rev. 2018, 47,
1
174-1188.
7) Li, X.; Kolemen, S.; Yoon, J.; Akkaya Engin, U.
(
Activatable Photosensitizers: Agents for Selective Photodynamic
Therapy. Adv. Funct. Mater. 2016, 27, 1604053.
(8) Luo, G.-F.; Chen, W.-H.; Hong, S.; Cheng, Q.; Qiu, W.-X.;
Zhang, X.-Z. Self-Transformable pH-Driven
A
Membrane-Anchoring Photosensitizer for Effective Photodynamic
Therapy to Inhibit Tumor Growth and Metastasis. Adv. Funct.
Mater. 2017, 27, 1702122.
(9) Zhao, X.; Li, M.; Sun, W.; Fan, J.; Du, J.; Peng, X. An
estrogen receptor targeted ruthenium complex as a two-photon
photodynamic therapy agent for breast cancer cells. Chem.
Commun. 2018, 54, 7038-7041.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(10) Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle
design for overcoming biological barriers to drug delivery. Nat.
Biotechnol. 2015, 33, 941.
(11) Duncan, R.; Richardson, S. C. W. Endocytosis and
Intracellular Trafficking as Gateways for Nanomedicine Delivery:
Opportunities and Challenges. Mol. Pharm. 2012, 9, 2380-2402.
(12) Goswami, U.; Dutta, A.; Raza, A.; Kandimalla, R.; Kalita,
S.; Ghosh, S. S.; Chattopadhyay, A. Transferrin-Copper
Nanocluster-Doxorubicin Nanoparticles as Targeted Theranostic
Cancer Nanodrug. ACS Appl. Mater. Inter. 2018, 10, 3282-3294.
(13) Choi, H. S.; Gibbs, S. L.; Lee, J. H.; Kim, S. H.; Ashitate,
Y.; Liu, F.; Hyun, H.; Park, G.; Xie, Y.; Bae, S.; Henary, M.;
Frangioni, J. V. Targeted zwitterionic near-infrared fluorophores
for improved optical imaging. Nat. Biotechnol. 2013, 31, 148.
(14) Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L. T.;
Choyke, P. L.; Kobayashi, H. Cancer cell-selective in vivo near
infrared photoimmunotherapy targeting specific membrane
molecules. Nat. Med. 2011, 17, 1685.
(15) Ferrari, M. Cancer nanotechnology: opportunities and
challenges. Nat. Rev. Cancer 2005, 5, 161.
(16) Jeong, Y.; Jo, Y. K.; Kim, B. J.; Yang, B.; Joo, K. I.; Cha,
H.
J.
Sprayable
Adhesive
Nanotherapeutics:
Mussel-Protein-Based Nanoparticles for Highly Efficient
Locoregional Cancer Therapy. ACS Nano 2018, 12, 8909-8919.
(17) Wang, X.; Yang, L.; Chen, Z.; Shin Dong, M. Application
of Nanotechnology in Cancer Therapy and Imaging. CA Cancer J
Clin. 2008, 58, 97-110.
(34) Bian, Y.; Li, M.; Fan, J.; Du, J.; Long, S.; Peng, X. A
proton-activatable
aminated-chrysophanol
sensitizer
for
(18) Li, K. C. P.; Pandit, S. D.; Guccione, S.; Bednarski, M. D.
photodynamic therapy. Dyes Pigm. 2017, 147, 476-483.
Molecular Imaging Applications in Nanomedicine. Biomed.
Microdevices 2004, 6, 113-116.
(35) Li, X.; Lee, D.; Huang, J.-D.; Yoon, J.
Phthalocyanine-Assembled Nanodots as Photosensitizers for
Highly Efficient Type I Photoreactions in Photodynamic Therapy.
Angew. Chem. Int. Edit. 2018, 57, 9885-9890.
(36) Li, X.; Kim, C. y.; Lee, S.; Lee, D.; Chung, H.-M.; Kim,
G.; Heo, S.-H.; Kim, C.; Hong, K.-S.; Yoon, J. Nanostructured
Phthalocyanine Assemblies with Protein-Driven Switchable
Photoactivities for Biophotonic Imaging and Therapy. J. Am.
Chem. Soc. 2017, 139, 10880-10886.
(37) Zheng, X.; Wang, L.; Liu, S.; Zhang, W.; Liu, F.; Xie, Z.
Nanoparticles of Chlorin Dimer with Enhanced Absorbance for
Photoacoustic Imaging and Phototherapy. Adv. Funct. Mater.
2018, 28, 1706507.
(38) Jung, H. S.; Han, J.; Shi, H.; Koo, S.; Singh, H.; Kim,
H.-J.; Sessler, J. L.; Lee, J. Y.; Kim, J.-H.; Kim, J. S. Overcoming
the Limits of Hypoxia in Photodynamic Therapy: A Carbonic
Anhydrase IX-Targeted Approach. J. Am. Chem. Soc. 2017, 139,
7595-7602.
(19) Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.;
Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery
to tumours. Nat. Rev. Mater. 2016, 1, 16014.
(20) Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A. M.; Sindhwani,
S.; Zhang, Y.; Chen, Y. Y.; MacMillan, P.; Chan, W. C. W.
Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer
Cells in Solid Tumors. ACS Nano 2018, 12, 8423-8435.
(21) Paulos, C. M.; Reddy, J. A.; Leamon, C. P.; Turk, M. J.;
Low, P. S. Ligand Binding and Kinetics of Folate Receptor
Recycling in Vivo: Impact on Receptor-Mediated Drug Delivery.
Mol. Pharmacol. 2004, 66, 1406.
(22) Cheng, Z.; Al Zaki, A.; Hui, J. Z.; Muzykantov, V. R.;
Tsourkas, A. Multifunctional Nanoparticles: Cost Versus Benefit
of Adding Targeting and Imaging Capabilities. Science 2012, 338,
903.
(23) Hyun, H.; Park, M. H.; Owens, E. A.; Wada, H.; Henary,
ACS Paragon Plus Environment