A. Stephen K. Hashmi et al.
COMMUNICATIONS
Tris(5-methylfuran-2-yl)methane (12)
Acknowledgements
2-Methylfuran (800 mg, 9.74 mmol) and 5-methylfurfural
(390 mg, 4.87 mmol) were dissolved in acetonitrile (4 mL)
and 4.4 mg (0.3 mol %) AuCl3 were added. After two days
the conversion was quantitative, the usual work-up afforded
We thank the Fonds der Chemischen Industrie and the Euro-
pean Union for financial support (AURICAT EU-RTN,
HPRN-CT-2002-00174).
1
the known 12;[21] yield: 98%. H NMR (300 MHz, CD3CN):
d¼2.24–2.27 (m, 9H), 5.43 (s, 1H), 5.99–6.01 (m, 6H).
References and Notes
[1] L. H. Bakeland, Fr. Patent 386,627, 1908; Chem. Abstr.
1909, 3: 12896; for a review, see: P. J. Lemstra, Chemie-
AnlagenþVerfahren 1997, 30, 62–66.
Synthesis of 2-Methyl-5-[(5-methylfuran-2-yl)(4-
styrylphenyl)methyl]furan (14)
[2] M. de Sousa Healy, A. J. Rest, J. Chem. Soc. Perkin
Trans. 1 1985, 973–982. S. Tanaka, H. Tomokuni, J. Het-
erocycl. Chem. 1991, 28, 991–994.
To trans-4-stilbenecarboxaldehyde (73.0 mg, 350 mmol) and 5
(78.0 mg, 708 mmol) in acetonitrile (0.5 mL) AuCl3, (2.1 mg,
7.0 mmol, 2 mol %) was added. After 24 h the solvent was re-
moved under vacuum and the crude product was purified by
column chromatography on silica gel (petrol ether/ethyl ace-
tate, 20:1) to afford 14; yield: 44.0 mg (35%). Rf (petrol
ether/ethyl acetate, 20:1)¼0.30; mp 1088C; IR (film): n¼
[3] I. Iovel, K. Mertins, J. Kischel, A. Zapf, M. Beller, An-
gew. Chem. 2005, 117, 3981–3985; Angew. Chem. Int.
Ed. 2005, 44, 3913–3917.
[4] Y. Nishibayashi, Y. Inada, M. Yoshikawa, M. Hidai, S.
Uemura, Angew. Chem. 2003, 115, 1533–1536; Angew.
Chem. Int. Ed. 2003, 42, 1495–1498.
;
3020, 1214, 1021, 962, 748, 668, 629 cmꢀ1 1H NMR
(500 MHz, CDCl3): d¼2.16 (s, 6H), 5.25 (s, 1H), 5.80 (s, 4H),
7.00 (d, J¼1.1 Hz, 2H), 7.14–7.17 (m, 3H), 7.24–7.27 (m,
2H), 7.36–7.38 (m, 2H), 7.40–7.42 (m, 2H); 13C NMR
(500 MHz, CDCl3): d¼13.7 (q, 2C), 45.0 (d), 106.2 (d, 2C),
108.3 (d, 2C), 126.6 (d, 2C), 126.7 (d, 2C), 127.7 (d), 128.5 (d),
128.6 (d), 128.8 (d, 2C), 128.9 (d, 2C), 136.2 (s), 137.5 (s),
139.6 (s), 151.6 (s, 2C), 152.8 (s, 2C); MS (70 eV): m/z (%)¼
355 (47) [MþHþ], 354 (100) [Mþ], 312 (84), 311 (100), 272
(32), 178 (45), 175 (80); HRMS (EI 70 eV): m/z¼354.1620;
calcd. for C25H22O2: 354.1620;.
[5] J. J. Kennedy-Smith, L. A. Young, F. D. Toste, Org. Lett.
2004, 6, 1325–1327.
[6] For other related reactions, see: M. T. Reetz, K. Sommer,
in: Handbook of C-H Transformations, (Ed.: G. Dyker),
Vol. 1, Wiley-VCH, Weinheim, 2005, pp 157–166.
[7] A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, An-
gew. Chem. 2000, 112, 2382–2385; Angew. Chem. Int. Ed.
2000, 39, 2285–2288.
[8] G. Dyker, E. Muth, A. S. K. Hashmi, L. Ding, Adv.
Synth. Catal. 2003, 345, 1247–1252.
[9] A. S. K. Hashmi, L. Grundl, Tetrahedron 2005, 61, 6231–
6236.
Synthesis of 1,1,3-Tris(5-methylfuran-2-yl)propane
(17)
´
[10] A. S. K. Hashmi, R. Salathe, T. M. Frost, L. Schwarz, J.-
To acrolein (110 mg, 2.00 mmol) and 5 (492 mg, 6.00 mmol) in
1.00 g MeCN, AuCl3 (1.8 mg, 0.3 mol%) in 49 mg MeCN was
added. Purification of the crude product by column chroma-
tography (hexanes/ethyl acetate, 10:1), afforded 17; yield:
557 mg (98%).
H. Choi, Appl. Catal. A 2005, 291, 238–246.
[11] A. S. K. Hashmi, Angew. Chem. 2005, 117, 7150–7154;
Angew. Chem. Int. Ed. 2005, 44, 6990–6993.
[12] A. S. K. Hashmi, L. Schwarz, M. Bolte, Tetrahedron Lett.
1998, 39, 8969–8972.
In addition traces of 16 were obtained (less than 1 mg), with
an excess ofacrolein, 16 was prepared independently.
Product: 16: Rf (hexanes/ethyl acetate, 5:1)¼0.20; 1H NMR
(250 MHz, CDCl3): d¼2.24 (s, 3H), 2.73–2.79 (m, 2H), 2.90–
2.96 (m, 2H), 5.83–5.85 (m, 1H), 5.88–5.89 (m, 1H), 9.82 (t,
J¼1.4 Hz, 1 H); 13C NMR (62.9 MHz, CDCl3): d¼13.24 (q),
20.66 (t), 41.82 (t), 105.80 (d), 105.94 (d), 150.65 (s), 151.79
(s), 201.05 (d); IR (NaCl, film): n¼3105, 2949, 2923, 2828,
[13] A. S. K. Hashmi, L. Schwarz, J. W. Bats, J. Prakt. Chem.
2000, 342, 40–51.
[14] J. A. Marshall, E. D. Robinson, J. Org. Chem. 1990, 55,
3450–3451.
[15] J. A. Marshall, G. S. Bartley, J. Org. Chem. 1994, 59,
7160–7171.
[16] A. S. K. Hashmi, J.-H. Choi, J. W. Bats, J. Prakt. Chem.
1999, 341, 342–357.
[17] A. S. K. Hashmi, T. L. Ruppert, T. Knçfel, J. W. Bats, J.
Org. Chem. 1997, 62, 7295–7304.
[18] A. S. K. Hashmi, L. Schwarz, Chem. Ber./Recueil 1997,
130, 1449–1456.
[19] A. S. K. Hashmi, Angew. Chem. 1995, 107, 1749–1751;
Angew. Chem. Int. Ed. Engl. 1995, 34, 1581–1583.
[20] C.-G. Yang, C. He, J. Am. Chem. Soc. 2005, 127, 6966–
6967.
[21] A. Riad, Z. Mouloungui, M. Delmas, A. Gaset, Synth.
Commun. 1989, 19, 3169–3173.
¼
2726, 1726 (C O), 1616, 1570, 1436, 1387, 1218, 1162, 1021,
941, 784 cmꢀ1; MS (80 eV): m/z (%)¼138 (30) [Mþ], 95
(100), 82 (58); anal. calcd. for C8H10O2 (136.16): H 7.30, C
69.55; found H: 7.27, C 75.74.
Product 17: Rf (hexanes/ethyl acetate, 5:1)¼0.56; 1H NMR
(250 MHz, CDCl3): d¼2.22–2.31 (m, 2H), 2.25 (s, 9H), 2.55–
2.61 (m, 2H), 3.99 (t, J¼7.6 Hz, 1H), 5.83–5.88 (m, 4H), 5.96
(d, J¼3.0 Hz, 2 H); 13C NMR (62.9 MHz, CDCl3): d¼13.32
(q), 13.40 (q, 2C), 25.73 (t), 31.06 (t), 38.12 (d), 105.48 (d),
105.60 (d), 105.75 (d, 2C), 106.26 (d, 2C), 150.13 (s), 150.63 (s,
2C), 153.28 (s, 2C), 153.49 (s); IR (NaCl, film): n¼3104, 2947,
2922, 2884, 1616, 1568, 1452, 1357, 1219, 1131, 1020, 958,
779 cmꢀ1; anal. calcd. for C18H20O3 (284.35): H 7.09, C 76.03;
found: H 7.26, C 69.77.
708
asc.wiley-vch.de
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2006, 348, 705 – 708